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Celaya Gto., México
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Código Postal: 38010. Correo electrónico: hugo.jimenez@itcelaya.edu.mx.

3Salvador E. Torreblanca-Bouchan. Profesor asociado A del Centro de Bachillerato Tecnológico industrial y de Servicios
No. 190. Dirección postal: Av 15 esquina calle 11, col. E. Venustiano Carranza, Boca del Rı́o, Ver., México. Código postal:
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Resumen: En la enseñanza del análisis numérico en las instituciones de educación universitaria se
utilizan libros de texto que omiten aspectos pedagógicos procedimentales, que inhiben algunos pro-
cesos de enseñanza-aprendizaje. En el caso de los algoritmos presentados en los libros de texto orien-
tados a resolver ecuaciones diferenciales ordinarias mantienen la metodologı́a de utilizar un ecuación
diferencial de primer orden para la aplicación de los métodos numéricos de solución obviando los de-
talles cuando se da solución de ecuaciones diferenciales de orden superior. En este artı́culo educativo
se presentan dos guı́as de solución didáctica con el fin de ayudar al aprendizaje con el objetivo de que
los alumnos sean capaces de proponer la solución numérica para problemas de valor inicial aplican-
do los métodos de Euler y Runge-Kutta a ecuaciones ordinarias de orden superior y puedan entonces
generar sus propias implementaciones en lenguajes de programación como Fortran 90. En este trabajo
se presentan 4 casos de estudio mostrando la aplicación de la propuesta. En este trabajo se probaron
las estregias didácticas propuestas de este artı́culo a un grupo de estudiantes obteniéndose resultados
favorables en los aprendizajes de los estudiantes.

PalabrasClave: Matemática educativa, enseñanza universitaria, análisis numérico, discursomatemáti-
co escolar.

Abstract: In the teaching of numerical analysis at university-level institutions, textbooks often neglect
pedagogical aspects,which in some casesmay hinder certain teaching-learning processes. Specifically,
algorithms presented in textbooks for solving ordinary differential equations typically rely on the
use of first-order differential equations, overlooking significant details required for solving higher-
order differential equations. This educational article presents a generalized anddidactic approach that
enables students to formulate numerical solutions for initial value problems. By applying Euler’s and
Runge-Kutta methods to higher-order ordinary differential equations, students will be empowered
to develop and implement their own solutions in programming languages. This study includes four
case studies that illustrate the practical application of the proposed approach. In this work, the two
strategies proposed in this paper were tested on a group of students, obtaining favorable results in
student learning.

Keywords: Mathematics education, college education, numerical analysis, schoolmathematical speech.

Resumo: Na ensino de análise numérica nas instituições de ensino superior, utilizam-se livros didáti-
cos que omitem aspectos pedagógicos procedimentais, o que inibe alguns processos de ensino- apren-
dizagem. No caso dos algoritmos apresentados nos livros orientados para resolver equações dife-
renciais ordinárias, mantém-se a metodologia de usar uma equação diferencial de primeira ordem
para a aplicação dos métodos numéricos de solução, ignorando os detalhes ao resolver equações di-
ferenciais de ordem superior. Neste artigo educacional, apresentam-se dois guias de solução didática
com o objetivo de auxiliar a aprendizagem, permitindo que os alunos sejam capazes de propor a
solução numérica para problemas de valor inicial aplicando os métodos de Euler e Runge-Kutta a
equações ordinárias de ordem superior e, assim, gerar suas próprias implementações em linguagens
de programação como Fortran 90. Neste trabalho, apresentam-se quatro estudos de caso mostrando a
aplicação da proposta. As estratégias didáticas propostas neste artigo foram testadas com um grupo
de estudantes, obtendo-se resultados favoráveis na aprendizagem dos alunos.

Palavras-chave: Matemática educativa, ensino universitário, análise numérica, discurso matemático
escolar.

1. Introducción

En la ciencia y tecnologı́a es importante disponer de modelos matemáticos que sean capaces de pre-
decir el comportamiento de un sistema. Las ecuaciones diferenciales ordinarias (ordinary differential
equation: ODE) es una manera de expresar los modelos matemáticos y son los más utilizados en dis-
tintas áreas de la ciencia y la ingenierı́a. Por ejemplo, algunas de sus aplicaciones son en el área de
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fenómenos de transporte, electricidad, fı́sica, electromagnetismo, entre otras. Sin embargo, no siempre
es posible obtener una solución analı́tica exacta debido a las altas no linealidades que presentan estas
expresiones. En estos casos debe utilizarse el análisis numérico con la finalidad de dar solución a es-
tas ecuaciones (Burden & Faires, 2011; Chapra & Canale, 2011; Gerald, 1997; Mora, 2018; Rapp, 2017),
con la desventaja de no disponer de la solución analı́tica. El análisis numérico tiene una alta impor-
tancia en los distintos campos de la ciencia y la ingenierı́a. Por un lado, resuelven ecuaciones que no
tienen solución exacta, con la ventaja que estos algoritmos pueden implementarse en computadoras
altamente eficientes. Por otro lado, los algoritmos numéricos permiten validar modelos propuestos
en las distintas disciplinas de la ciencia y la ingenierı́a. Por ejemplo, en Sandoval-Hernández et al.
(2018) y Vázquez-Leal et al. (2015) se utilizó el algoritmo del trapezoide combinado con extrapola-
ción de Richardson con el objetivo de validar las soluciones semi-analı́ticas generadas con losmétodos
de la serie Taylor modificada, método de Padé directo optimizado, y el método de perturbación de
homotopı́a con el fin de resolver la ecuación diferencial ordinaria que modela la difusión de oxı́geno
en una célula esférica con cinética de absorción de Michaelis-Menten con condiciones de frontera.
En Sandoval-Hernández et al. (2019) se empleó el análisis numérico en la implementación de la ho-
motopı́a de continuación con seguimiento hiperesférico para encontrar las raı́ces de los sistemas de
ecuaciones no lineales (Jiménez-Islas, 1996; Jiménez-Islas et al., 2020), no obstante, el aprendizaje del
análisis numérico también se encuentra influido por el discurso matemático escolar (DME), ya que
tanto las clases como los libros se encuentran influenciados por este discurso carente de marcos de
referencia imponiendo una violencia simbólica (Paz-Corrales & Molina, 2022; Sandoval-Hernández
et al., 2021, 2022; Soto & Cantoral, 2014; Uriza et al., 2015). En caso de los libros de análisis numérico
utilizados en los cursos de educación universitaria, se presentan ejemplos de aplicación en la cien-
cia y la ingenierı́a conservando la misma exposición de los temas (Burden & Faires, 2011; Chapra &
Canale, 2011; Gerald, 1997). En algunos casos, la explicación de los algoritmos de solución dejan a
la expectativa la implementación de sistemas más complejos (Burden & Faires, 2011; Chapra & Ca-
nale, 2011; Gerald, 1997). Por ejemplo, en la solución numérica de las ODE con valor inicial usando
algoritmos de un solo paso, como los métodos de Euler y Runge-Kutta, presentan el clásico ejemplo
de solución utilizando una ecuación diferencial de primer orden y en su caso argumentan que para
dar solución a ecuaciones diferenciales de orden superior, estas deben de descomponerse en sistemas
de ecuaciones diferenciales de primer orden haciendo un cambio de variable sin presentar detalles
(Edwards & Penney, 2009; Ricardo, 2018). En otros casos, algunos autores presentan cuando mucho,
un ejemplo utilizando una ecuación de segundo orden (Burden & Faires, 2011; Edwards & Penney,
2009).

En la enseñanza del análisis numérico, es fundamental considerar estrategias didácticas alternas que
fomenten la conexión entre los conocimientos previos del estudiante y la nueva información que de-
be ser aprendida (Dı́az Barriga Arceo & Hernández Rojas, 2002). En el caso del aprendizaje de los
algoritmos de un solo paso como el método de Euler (ME) y Runge-Kutta de cuarto orden (R-K4)
para resolver numéricamente ecuaciones diferenciales se busca crear o potenciar enlaces adecuados
entre los conocimientos previos y la información nueva que ha de adquirirse, asegurando con ello
una mayor significatividad de los aprendizajes logrados.

En la enseñanza tradicional los profesores que impartı́an las asignaturas de matemáticas en las licen-
ciaturas de ingenierı́a provenı́an del sector productivo contando con amplia experiencia de campo
industrial pero en muchos casos con poca o nula formación docente ya que gran parte de su ejerci-
cio profesional lo habı́an dedicado al sector productivo (Lucena, 2021; Sánchez-Olavarrı́a, 2020). Sin
embargo, la proliferación de maestros con maestrı́a y doctorado enriquece el contenido de las clases,
y ante una falta de experiencia o formación docente, algunos contenidos en las asignaturas no son
impartidos de manera clara y concisa. La problemática crece cuando no se realiza una planeación
didáctica adecuada de los contenidos y de los conocimientos previos que los alumnos deben poseer
(Dı́az Barriga Arceo & Hernández Rojas, 2002), en la misma manera que se ignoran los canales de
aprendizaje de los alumnos (Gamboa Mora et al., 2015).

En el trabajo reportado por Castro y Guzmán de Castro (2017) se llevó a cabo un estudio cualitativo
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en la Universidad Pedagógica Experimental Libertador Instituto Pedagógico de Caracas, Venezuela,
en donde se encontró que los docentes dominan su área de conocimiento, algunos conocen la teorı́a
acerca de los estilos de aprendizaje pero frente a grupo no los toman en cuenta. Mucho menos en
sus planeaciones didácticas. Asimismo, se encontró que hay estudiantes que ignoran la teorı́a como
la práctica de los estilos de aprendizaje. También se halló que los docentes tienden a utilizar la mis-
ma estrategia de enseñanza y los mismos recursos didácticos de acuerdo al contenido que marca el
temario de la asignatura. En ese sentido, la técnica más utilizada por los docentes es la expositiva con
el uso del pizarrón.

En todo proceso de enseñanza-aprendizaje deben tomarse en cuenta los estilos de aprendizaje, ya
que el empleo de esquemas e ilustraciones favorecen a quienes aprenden mejor mediante recursos
visuales. De acuerdo con Dı́az Barriga Arceo y Hernández Rojas (2002), las ilustraciones representan
la realidad visual que nos rodea. Además están clasificados en descriptiva, expresiva, construccional,
funcional, lógico matemática, algorı́tmica y arreglo de datos. De esta manera, al incorporar el manejo
de ilustraciones del tipo lógico matemática o algorı́tmica en los cursos de matemáticas como lo es el
análisis numérico promueven que los estudiantes asimilen la nueva información.

En este artı́culo se exponen los planteamientos esenciales que permiten a los alumnos comprender los
métodos numéricos de Euler y de Runge-Kutta de cuarto orden en la resolución de ecuaciones diferen-
ciales de orden superior. Al lograr este objetivo, los estudiantes estarán en condiciones de desarrollar
sus propios códigos de programación orientados a la solución de problemas de valor inicial.

2. Estado del arte

Existen diversos métodos en la literatura que permiten resolver ecuaciones diferenciales ordinarias
con condiciones iniciales (Burden & Faires, 2011; Chapra & Canale, 2011; Gerald, 1997). Entre los
métodos de paso fijo más conocidos y que se enseñan en la universidades se encuentran, el método
de la serie de Taylor, el método de Euler, Euler modificado, método deHeun, método de puntomedio,
métodos de Runge-Kutta, entre otros (Burden & Faires, 2011; Chapra & Canale, 2011; Gerald, 1997;
Rapp, 2017). Los libros, al enseñar estos métodos numéricos, generalmente parten de un ejemplo
sencillo: una ecuación diferencial ordinaria de primer orden con su respectiva condición inicial.

dy(t)

dt
= f(t, y), a ≤ t ≤ b, y(a) = α. (1)

Contextualizando, demanera geométrica un problemade valor inicial (PVI) de primer orden significa
que se busca una función solución y(x) de la ecuación diferencial en el intervalo δ que contiene a x0, de
tal manera que la gráfica de la función pasa por el punto (x0, y0). En el caso de una ODE de segundo
orden, se está buscando una función solución y(c) en el intervalo δ que contiene a x0 , que la función
pase por (x0, y0) y que además, la pendiente a la curva en ese punto tenga un valorm.

El método de Euler es una de las primeras técnicas de aproximación que se introduce con el propósito
de resolver problemas de valor inicial, debido a su sencillez y a que constituye un punto de partida
útil en la comprensión de otros métodos numéricos más complejos (Burden & Faires, 2011; Chapra &
Canale, 2011; Gerald, 1997; Rapp, 2017). Comúnmente se emplea con fines didácticos, ya que permite
explicar los principios básicos en los que se sustentan técnicas más avanzadas. De igual manera, a
este método se le conoce como predictor de Euler. Es un procedimiento de integración numérica que
consiste en encontrar demanera iterativa la solución de una ODE de primer orden a partir de un valor
inicial dado y(t0), avanzando con un paso de tamaño de paso fijo h. Consiste en aplicar la fórmula
iterativa en (1) de tal manera

yn+1 = yn + hf(tn, yn), (n ≥ 0)

https://revistas.tec.ac.cr/index.php/matematica
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para calcular las aproximaciones de manera sucesiva y1, y2, y3, . . . de los valores y(t1), y(t2), y(t3), . . .
de la solución exacta y = y(t) en los respectivos puntos t1, t2, t3, . . .. La figura 1 muestra el proceso de
Euler.

y
2

y
1

y
3

y
4

y
5

y f ( )=

f ( )

1 2 3 400

Figura 1: Interpretación geométrica del ME. Modificación propia, tomado de Jerves-
Cobo (2009).

Veáse que el ME utiliza la pendiente al inicio del intervalo como una aproximación de la pendiente
promedio en todo el intervalo (Chapra & Canale, 2011). De a acuerdo a la figura 1, en cada iteración
se va encontrando una pendiente en cada punto de t0, t1, . . .. En realidad lo que se va trazando en cada
iteración es una recta con una pendiente que va cambiando en cada punto t formando un polı́gono
prediciendo el próximo valor de y(t). Si se reduce el tamaño de paso, entonces disminuye el error
entre la aproximación y el valor exacto (Burden & Faires, 2011; Chapra & Canale, 2011; Gerald, 1997),
sin embargo, la disminución del tamaño de paso no evita que acumulen errores con el paso del tiempo
(o respecto a la variable independiente en su caso), principalmente cuando se tienen funciones con
una curvatura muy severa. En otras palabras, el error local es proporcional al cuadrado del tamaño
del paso, y el error global es proporcional al tamaño del paso (Chapra & Canale, 2011; Gerald, 1997).
Sin embargo, tiene la desventaja que si el tamaño de paso se hace demasiado pequeño en relación con
las cantidades con las que se está trabajando, los errores pueden empeorar dando como resultado una
aproximación errónea (Chapra & Canale, 2011).

Losmétodos RK logranmayor precisión en las aproximaciones numéricas sin la necesidad de calcular
derivadas de orden superior. Son métodos de un paso porque la determinación de la solución en un
instante determinado se utiliza únicamente la información relativa a la solución obtenida en el instante
anterior. Existen diversas variantes que tienen la forma general de

yi+1 = yi + f(ti, yi, h)h,

donde f(ti, yi, h) es la función incremento, la cual es una pendiente representativa en el intervalo
(Chapra & Canale, 2011). La función f(xi, yi, h) se escribe de forma general como

k1 = f(ti, yi)
k2 = f(ti + p1h, yi + q11k1h)
k3 = f(ti + p2h, yi + q21k1h+ q22k2h)

...
kn = f

(
ti + pn−1h, yi + qn−1,1k1h+ qn−1,2k2h+ · · ·+ qn−1,n−1kn−1h

)
,

donde p, q son constantes y las kn son relaciones de recurrencia (Chapra & Canale, 2011). De esta ma-
nera, losmétodos deHeun y puntomedio son considerados comométodos de Runge-Kutta de segun-



6 Revista digital Matemática, Educación e Internet (https://revistas.tec.ac.cr/index.php/matematica). Vol 26, No 2. Marzo, 2026 − Agosto, 2026

do orden (Burden& Faires, 2011; Chapra &Canale, 2011). Existen otrosmétodos considerados dentro
de la clasificación RK, los métodos de tercer orden (RK3), cuarto orden (RK4), Runge-Kutta-Fehlberg
(RK45), entre otros (Burden & Faires, 2011; Chapra & Canale, 2011; Gerald, 1997). La denominación
del orden se debe al error correspondiente por paso. En Burden y Faires (2011) y Chapra y Canale
(2011) se presentan detalles de la deducción de los métodos RK más conocidos. La figura 2 presenta
la clasificación de los métodos RK más conocidos que permiten resolver numéricamente problemas
de valor inicial y que son los que de manera tradicional se enseñan en las instituciones universitarias.

Métodos de
Runge Kutta

Heun
k1 = f(ti, yi)
k2 = f(ti + h, yi + hk1)

yi+1 = yi +
h
2 (k1 + k2)

Euler modificado
k1 = f(ti, yi)
un+1 = yn + hk1
k2 = f(ti+1, ui+1)

yi+1 = yi +
h
2 (k1 + k2)

RK 45
k1 = f(ti, yi)

k2 = f
(
ti +

h
4 , yi +

h
4k1

)
k3 = f

(
ti +

3h
8 , yi +

3
32(k1 + 3k2)

)
k4 = f

(
ti +

12h
13 , yi +

1
2197(1932k1 − 7200k2 + 7296k3)

)
k5 = f

(
ti + h, yi +

439
216k1 − 8k2 +

3680
513 k3 −

845
4104k4

)
k6 = f

(
ti +

h
2 , yi −

8
27k1 + 2k2 − 3544

2565k3 +
1859
4104k4 −

11
40k5

)
yi+1 = yi +

(
25
216k1 +

1408
2565k3 +

2197
4101k4 −

1
5k5

)

Ralston
k1 = f(ti, yi)

k2 = f
(
ti +

3h
4 , yi +

3h
4 k1

)
yi+1 = yi +

h
3 (k1 + 2k2)

RK 4° orden
k1 = f(ti, yi)

k2 = f
(
ti +

h
2 , yi +

h
2k1

)
k3 = f

(
ti +

h
2 , yi +

h
2k2

)
k4 = f(ti + h, yi + hk3)

yi+1 = yi +
h
6 (k1 + 2k2 + 2k3 + k4)

Figura 2:Clasificación de los algoritmos Runge-Kuttamás conocidos. Elaboración pro-
pia.

En el caso del método de Runge-Kutta consiste en calcular yi+1 del valor de la solución exacta en el
instante ti, con estos valores se pueden encontrar k1, k2, k3 y k4. Las fórmulas para R-K4 son:

k1 = f(ti, yi),

k2 = f(ti +
1

2
h, yi +

1

2
hk1),

k3 = f(tn +
1

2
h, yi +

1

2
hk2),

k4 = f(ti + h, yn + hk3),

yi+1 = yi +
h

6
(k1 + 2k2 + 2k3 + k4).

(2)

Veáse que h
6 (k1 +2k2 +2k3 + k4) en la última ecuación de 2 es un promedio ponderado de valores de

f(t, y). La figura 3 muestra la interpretación geométrica de este método de solución numérica.

En la figura 3 puede verse k1 es la pendiente en el extremo izquierdo del intervalo, k2 la pendiente
en el punto medio. Aplicando el método de Euler en el punto ti obtenemos ti + h/2; k3 es la segunda
aproximación para la pendiente en el punto medio, y k4 es la pendiente en el punto ti + h usando
fórmula de Euler y la pendiente k3 en ti para obtener ti + h. El método RK4 tiene error por paso del
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orden de O(h5), mientras que el error total acumulado tiene el orden O(h4). Por lo tanto, la conver-
gencia del método es del orden de O(h4), razón por la cual es usado en los métodos computacionales
(Burden & Faires, 2011; Chapra & Canale, 2011; Gerald, 1997).

{
{

{

f ( )

0

1

1

1

1

1

1

+
h
–
2

+ h

Figura 3: Interpretación geométrica del método R-K4. Modificación propia, tomado de
Jerves-Cobo (2009) .

Cabe destacar que en la literatura del análisis numérico se han desarrollado diversos algoritmos diri-
gidos a resolver problemas de valor inicial mediante esquemas de paso múltiple, entre los cuales se
encuentran los métodos deMilne, Adams-Bashforth y Adams-Moulton, entre otros (Burden & Faires,
2011; Chapra & Canale, 2011; Gerald, 1997; Rapp, 2017).

3. Materiales y métodos

La computadora utilizada en el desarrollo de este trabajo estaba equipada con una CPU Intel Core
i5-7200U @ 2.50 GHz con 2 núcleos y 4 hilos, con tarjeta de video Mesa Intel® HD Graphics 620 y 8
GB de RAM, sistema operativo Linux Ubuntu versión 20.04.6 LTS. El software utilizado fue Maple
2021 para realizar las gráficas y obtener las soluciones exactas para los casos de estudio. Asimismo, se
utilizó la computadora Raspberry Pi modelo 1, con procesador Broadcom BCM2835 @ 700 MHz, 512
MB RAM, GPU VideoCore IV, salidas de video HDMI y compuesto, audio 3.5 mm, lector SD, 2 x USB
2.0, GPIO 26 pines, con sistema operativo Raspbian 12.2.0-14+rpi1. La versión de gfortran utilizado
fue 12.20. El lenguaje de programación utilizado fue Fortran 90.

En este trabajo se llevó a cabo una revisión documental mediante el enfoque de revisión sistemática
(Crossan & Apaydin, 2010). Esta metodologı́a emplea un algoritmo explı́cito con el objetivo de rea-
lizar una búsqueda exhaustiva y una evaluación crı́tica de la literatura. Las revisiones sistemáticas
incrementan la calidad del proceso y de los resultados al seguir un procedimiento transparente y re-
producible (Tranfield et al., 2003). No obstante, esta técnica también enfrenta ciertos desafı́os, como
la dificultad de sintetizar información proveniente de distintas disciplinas, la escasa representación
de libros y el volumen considerable de material que debe analizarse (Pittaway et al., 2004). Por lo
general, el proceso de revisión consta de tres etapas: recopilación de datos, análisis de información y
sı́ntesis (Crossan & Apaydin, 2010).

En la primera etapa, se hizo una revisión sistemática de la literatura de análisis numérico, en artı́culos
educativos. De la misma manera, en el caso de los libros, se llevó a cabo una revisión fı́sica, tanto en
aquellos publicados en formato fı́sico como en formato electrónico. La Tabla 1 presenta el proceso
metodológico utilizado en este trabajo. Las principales fuentes de búsqueda para las referencias de



8 Revista digital Matemática, Educación e Internet (https://revistas.tec.ac.cr/index.php/matematica). Vol 26, No 2. Marzo, 2026 − Agosto, 2026

los artı́culos cientı́ficos fueron las bases de datos SCOPUS y Elsevier, Scielo y Redalyc. Se seleccio-
naron artı́culos publicados en revistas indexadas y se utilizaron términos de búsqueda relacionados
con el tema de esta investigación. También se consideraron las estrategias didácticas empleadas. Re-
ferente a los libros, se incluyeron aquellos que suelen ser los más utilizados en las universidades en
las asignaturas de métodos numéricos. En este artı́culo, se citan Burden y Faires (2011), Chapra y
Canale (2011) y Gerald (1997) porque son referencias consideradas como un referente bibliográfi-
co en paı́ses de habla hispana (Granados-Ospina, 2015) y anglosajones. Esta afirmación se basa en
el hecho que la mayorı́a de los libros utilizados en los paı́ses hispano hablantes son traducciones de
obras originalmente publicadas en inglés por autores no latinos. No obstante, también existen textos
primigenios en español como la obra Introducción a los Métodos numéricos del profesor Walter Mora F.
del Instituto Tecnológico de Costa Rica (Mora, 2018), hecho que puede comprobarse al consultar los
datos de impresión en las primeras páginas.

Tabla 1: Revisión de las referencias. Elaboración propia basada en Shu y Liu (2021).

Paso Descripción Procedimiento

1 Bases de datos
consultadas

Scopus, Scielo, Dianet, Google Scholar.

2 Criterios de
búsqueda

Análisis numérico, discurso matemático esco-
lar, métodos numéricos, matemática educativa.
Perı́odo de búsqueda: 2011-2024.

3 Criterios de
inclusión y
exclusión

Exclusión:

Documentos no representativos (revisión
de libros, artı́culos sin ISSN, etc.)

Fuera del tiempo descrito

Inclusión:

Idiomas en Español e Inglés

Estrategias didácticas para la solución de
ecuaciones diferenciales ordinarias de or-
den superior en paı́ses latinos

4 Documentos
irrelevantes

Cada referencia fue revisada minuciosamente a
de fin de sustraer las fuentes menos relevantes.

5 Citas Se consideran los enlaces de las referencias en-
contradas en las bases de datos para expandir la
búsqueda de datos.

6 Criterios de
revisión

El mismo del paso 3.

Con el propósito de evaluar la metodologı́a presentada en este artı́culo, se trabajó con dos grupos,
compuestos de estudiantes de las ingenierı́as en Electrónica, Semiconductores y Ambiental, corres-
pondientes al quinto semestre del Tecnológico Nacional de México en Celaya. Los grupos estuvieron
conformados por 30 y 31 alumnos, respectivamente. Uno de ellos fue designado como grupo expe-
rimental, al que se le aplicó la estrategia didáctica desarrollada en este estudio. El otro, con 31 estu-
diantes, actuó como grupo de control y recibió la enseñanza de los métodos de Euler y Runge-Kutta
de cuarto orden (R-K4) siguiendo el enfoque tradicional. Posteriormente, ambos grupos fueron eva-
luados mediante el instrumento descrito en el Apéndice A.
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4. Fundamento teórico

En general, el análisis numérico se emplea en la búsqueda de soluciones aproximadas de sistemas
de ecuaciones no lineales, ası́ como de ecuaciones diferenciales ordinarias y parciales, especialmente
cuando no es posible obtener una solución exacta. También se recurre a este campo para calcular
el valor numérico de integrales que no pueden resolverse mediante métodos analı́ticos conocidos
(Collins, 2021; Guichard, 2017). Tienen la ventaja que se pueden implementar en alguna computadora
utilizando lenguajes de programación como C++, Java, Python, Matlab, Maple, Fortran, entre otros.
Asimismo, el análisis numérico tiene aplicación en el procesamiento digital de señales (Vázquez et
al., 2015). Por ejemplo, en dispositivos electrónicos como los DSPic (Digital Signal Programmable
Integrated Circuit), es posible programar la transformada rápida de Fourier con el fin de realizar el
análisis espectral de las señales adquiridas (Vázquez et al., 2015).

En el caso de los algoritmos numéricos orientados a resolver problemas de valor inicial exigen que las
ODE sean de primer orden, como es caso de la ecuación 1, sin embargo, esto no siempre es ası́. Muchos
problemas en la ciencia y la ingenierı́a son modelados por ecuaciones de orden 2 o superior. En el
caso del movimiento armónico simple, modelar un sistema masa-resorte conduce a una ecuación de
segundo orden con valores iniciales (Edwards & Penney, 2009). De la misma manera, los problemas
de frontera son gobernados por ecuaciones diferenciales de segundo orden (Edwards & Penney, 2009;
Sandoval-Hernández et al., 2018; Vázquez-Leal et al., 2015).

Una ecuación ordinaria de orden superior que gobierna un sistema o que describe un fenómeno fı́sico,
quı́mico puede representarse de la forma canónica

an
dny(t)

dtn
+ an−1(t)

dn−1y(t)

dtn−1
+ an−2(t)

dn−2y(t)

dtn−2
+ . . .+ a1(t)

dy(t)

dt
+ a0(t)y(t) = f(t) (3)

Introduciendo las variables que permiten reducir el orden de las derivadas (Edwards & Penney, 2009;
Ricardo, 2018) tenemos y(t) = x1, y′(t) = x2, y′′(t) = x3, . . ., yn−1 = xn. Estas espresiones pueden
reescribirse si derivamos los cambios de variable, obteniéndose

y′(t) = dx1
dt

= x2

y′′(t) = dx2
dt

= x3

y′′′(t) = dx3
dt

= x4

...

y(n−1)(t) =
dxn−1

dt
= xn

y(n)(t) =
dxn
dt

.

Notése que y(n)(t) = dxn
dt implica que en la ecuación (3) debe despejarse la derivada de mayor orden,

por lo tanto se obtiene un sistema de ecuaciones diferenciales ordinarias de primer orden
dxn
dt = −an−1(t)

an(t)
xn − an−2(t)

an(t)
xn−1 − an−3(t)

an(t)
xn−2 − . . .− a1(t)

an(t)
x2 − a0(t)

an(t)
x1 +

1
an(t)

f(t),
dxn−1

dt = xn,
dxn−2

dt = xn−1,
... ...

dx2
dt = x3,
dx1
dt = x2.

(4)
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De esta manera, la ODE de orden superior puede ser resuelta aplicando cualquiera de los métodos
numéricos para problemas de valor inicial. La versión vectorial del método de Euler se puede repre-
sentar como

xi+1 = xi + k,

k = hf(ti, xi).
(5)

En la ecuación (5) se puede ver que la variable x tiene una dimensión n ası́ como tambien la constante
k. La ecuación (6) es la versión vectorial del método de Runge-Kutta de orden 4, donde x también
tiene dimensión n y k multiplicidad n

k1 = hf(ti,xi),

k2 = hf(ti +
h

2
, xi +

k1h

2
),

k3 = hf(ti +
h

2
, xi +

k2h

2
),

k4 = hf(ti + h,xi + k3),

xi+1 = xi +
1

6
(k1 + 2k2 + 2k3 + k4).

(6)

5. Propuesta didáctica

5.1. Estrategia propuesta con el método de Euler

En la figura 4 se muestra el esquema de la estrategia didáctica propuesta con el fin de abordar ODE
de orden superior. Inicialmente, la ecuación diferencial (3) se transforma en un sistema de ecuaciones
lineales (4), determinando el número de ecuaciones en función del valor de n.

Figura 4: Estrategia didáctica enfocada en el método de Euler. Elaboración propia.
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En segundo lugar, el número de variables que se utilizan, xn será igual al orden n de la ODE. De esta
manera, el número de variables empleadas en la implementación númerica es n+1 porque se incluye
la variable independiente t (o del tiempo enmuchos casos). Para implementar las condiciones iniciales
se ocupará la variables x0, . . . , xn asignando desde y(0) hasta yn−1(0). Este proceso se muestra en el
recuadro de la figura.

En tercer lugar, el número de ecuaciones que discretizan el sistema será igual al orden n de la EDO.
A continuación, se presenta la Estrategia Didáctica Euler (Algoritmo 1) orientada a la solución de
ecuaciones diferenciales ordinarias utilizando el método de Euler (ME).

Algoritmo 1. EstrategiaD. Euler enfocada en la resolución de ecuaciones diferenciales
ordinarias de orden superior.

1. Descomponer la ODE en un sistema de ecuaciones haciendo el cambio de va-
riable. El número de ecuaciones resultantes es igual al orden n de la ecuación
diferencial. Ver ecuación (4) y figura (4).

2. El número de variables necesarias en la implementación del método de Euler es
igual a n + 1 incluyendo la variable independiente. De esta manera se obtienen
x1, x2, . . . , xn, más t, donde t es la variable independiente.

3. Una vez asignadas las variables, se les adiciona el segundo subı́ndice m para la
implementación. Esto es, x1,m, x2,m, . . . , xn,m, y uno para la variable indepedien-
te, es decir tm , en dónde este subı́ndice será usado para la el proceso de iteración.

4. A fin de implementar las condiciones iniciales se asignarán dos ı́ndices a ca-
da variable. Uno de los ı́ndices es m = 0. De esta manera se comienza con
x1,0 = y(0), x2,0 = y′(0), x3,0 = y′′(0), . . . , xn,0 = yn−1(0). En el caso de la va-
riable independiente tenemos t0 = 0.

5. Con el finde implementar elmétodode Euler el número de ecuaciones recursivas
que discretizan al sistema es igual al orden n de la ODE. Veáse la estructura en
la figura 4. La función despejada f(x) o bien dxn

dt . En este momento se inicia el
proceso de iteración. La solución deseada de f(t) se encuentra en la variable x1.

5.2. Estrategia propuesta con el método de Runge-Kutta de cuarto orden

En la implementación del método de R-K4, conviene expresar la notación de las derivadas por funcio-
nes en eq. (4) como se ve en la figura 5. De esta manera, el número de funciones es igual al orden n de
la ecuación diferencial que se busca resolver numéricamente. Por otro lado, cada una de las constantes
k1, k2, k3 y k4, tendrá una multiplicidad n debido que tenemos n funciones. Esto es, cada constante
tendrá doble ı́ndice. Para cada constante, el primer ı́ndice es 1, . . . , n mientras que el segundo hace
referencia a que constante nos referimos. Por ejemplo, si tenemos una ODE de orden 3, entonces para
la constante k1 tendremos k1,1, k2,1, k3,1. Este proceso se muestra en la misma figura 5. En la parte infe-
rior de esta figura, se observa la ecuación de recursividad, que también posee multiplicidad n y doble
ı́ndice. Del mismo modo, las ecuaciones de recursividad asociadas presentarán una multiplicidad n.

A continuación se presenta la estrategia didáctica (Algoritmo 2) que expone el procedimiento orien-
tado a resolver ecuaciones diferenciales ordinarias de orden superior y sistemas de ecuaciones dife-
renciales.
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Figura 5: Estrategia didáctica con R-K4. Elaboración propia.

Algoritmo 2. Estrategia D. R-K4 en la resolución de ecuaciones diferenciales ordina-
rias de orden superior.

1. Descomponer la ODE en un sistema de ecuaciones haciendo el cambio de va-
riable. El número de ecuaciones resultantes es igual al orden n de la ecuación
diferencial. Ver ecuación (4) y figura 5.

2. El número de variables para la implementación del método de R-K4 es igual
a n + 1 incluyendo la variable independiente t. De esta manera se obtienen
x1, x2, . . . , xn, más t.

3. Una vez asignadas las variables, se les adiciona el segundo sub ı́ndice m en su
implementación. Esto es, x1,m, x2,m, . . . , xn,m, y uno para la variable indepedien-
te, es decir tm, en dónde este subı́ndice será usado para el proceso de la iteración.

4. Con el fin de establecer las condiciones iniciales se asignarán dos ı́ndices a ca-
da variable. Uno de los ı́ndices es m = 0. De esta manera se comienza con
x1,0 = y(0), x2,0 = y′(0), x3,0 = y′′(0), . . . , xn,0 = yn−1(0). En el caso de la va-
riable independiente tenemos t0 = 0.

5. Las constantes k1, . . . , k4 tendrán una multiplicidad n. Esto es, kn,1, . . . , kn,4, ver
la figura 5.

6. La ecuación recursiva tendrá dimensión n, y la variable x1,m+1 se tiene el valor
buscado de f(x).
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6. Casos de estudio

Se presentan 4 casos de estudio en donde se aplica la metodologı́a presentada en este artı́culo con el
fin de resolver numéricamente ODE’s de orden superior.

Caso de estudio 1

Resolver la ecuación diferencial de segundo orden dada por

6
d2

dt2
y(t)− 5

d

dt
y(t) + y(t) = 0, (7)

con condiciones iniciales y(0) = 4, y′(0) = 0 en el intervalo 0 ≤ t ≤ 1.5. Muestre el procedimiento
numérico para las primeras 3 iteraciones con un h = 0.02. Con propósito de comparación, se tiene
que la solución exacta de (7) es f(t) = 12 exp(31t)− 8 exp(12t).

Solución. Aplicando la Estrategia D. Euler con sus respetivos pasos se tiene:

Paso 1. La ecuación diferencial debe escribirse como un sistema de ecuaciones lineales introdu-
ciendo el cambio de variable. De esta manera se tiene

dx2
dt

=
5

6
x2 −

1

6
x1,

dx1
dt

= x2.

Nótese que se tienen dos ecuaciones diferenciales lineales porque se ha linealizado una ecuación
de segundo orden y las variables introducidas son x1, x2.

Paso 2. El número de variables es n + 1 = 3 y las variables que utilizaremos en la solución del
sistema son x1, x2 más la variable independiente t.

Paso 3. Establece que una vez asignadas las variables debe introducirse el ı́ndice m a nuestras
variables, obteniéndose entonces x1,m, x2,m. En el caso de la variable independiente tenemos tm.

Paso 4. Discretizar las condiciones iniciales implica que el ı́ndicem se debe poner a cero, esto es
x1,0 = 4, x2,0 = 0, t0 = 0. Con estos valores iniciales se da inicio al proceso de iteración.

Paso 5. En la implementación del método de Euler tendremos dos ecuaciones porque n = 2. De
esta manera obtenemos:

x1,m+1 = x1,m + hx2,m,

x2,m+1 = x2,m + h
d

dt
(x2,m).

Comenzando el proceso de iteración se muestran las primeras cuatro iteraciones por tratarse de



14 Revista digital Matemática, Educación e Internet (https://revistas.tec.ac.cr/index.php/matematica). Vol 26, No 2. Marzo, 2026 − Agosto, 2026

un procedimiento repetitivo
m = 0,

t1 = 0.02,

x1,1 = x1,0 + hx2,0 = 4,

x2,1 = x2,0 + h
(5
6
x2,0 −

1

6
x1,0

)
= −0.0333.

m = 1,

t2 = 0.04,

x1,2 = x1,1 + hx2,1 = 3.9997,

x2,2 = x2,1 + h
(5
6
x2,1 −

1

6
x1,1

)
= −0.02683.

m = 2,

t2 = 0.06,

x1,3 = x1,2 + hx2,2 = 3.9992,

x2,3 = x2,2 + h
(5
6
x2,2 −

1

6
x1,2

)
= −0.0407.

La figura 6 muestra la solución del sistema de ecuaciones contra la solución exacta. Obsérvese que la
solución de la ecuación diferencial corresponde a la variable x1.

Figura 6: Solución numérica con el método de Euler vs analı́tica. Elaboración propia.

Caso de estudio 2

Resolver por el método de Euler con un paso h = 0.02 y hasta t = 1.5 la ecuación diferencial dada por

d3

dt3
y(t) + 6

d2

dt2
y(t) + 6y(t) = −10− t,

y(0) = 0.15, y′(0) = 0.1, y′′(0) = 2.

(8)

La solución exacta de (8) es:
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f(t) = −0.166666667t− 1.66666667 + 0.0934937850 exp(−6.15821289t)+

1.72317286 exp(0.0791064438t) cos(−0.983895744t)−
0.717664773 exp(0.0791064438t) sin(−0.983895744t).

Solución. Aplicando los pasos de la Estrategia D. Euler, el paso 1 establece en descomponer la ODE
en un sistema de ecuaciones con la introducción de las variables x1, x2, x3. El paso 2 establece que se
tienen n+ 1 = 4 variables porque se incluye variable independiente t, obteniéndose

dx3
dt

= −6x3 − 6x1 − 10− t,

dx2
dt

= x3,

dx1
dt

= x2.

El paso 3 nos indica que se debe asignar el indice m a todas las variables, y el paso 4, donde se in-
troducen las condiciones iniciales en forma discretizada, se obtiene lo siguiente: x1,0 = 0.15, x2,0 =
0.1, x3,0 = 2, t0 = 0; y el paso 5 que establece la implementación de la ecuación de Euler al sistema de
ecuaciones con las iteraciones, en este caso se tiene que la ecuación de Euler tiene una multiplicidad
3.

x1,m+1 = x1,m + hx2,m,

x2,m+1 = x2,m + hx3,m,

x3,m+1 = x3,m + h
d

dt
(x3,m).

Iniciando el proceso iterativo obtenemos

m = 0,

t1 = 0.02,

x1,1 = x1,0 + hx2,0 = 0.1520,

x2,1 = x2,0 + hx3,0 = 0.140,

x3,1 = x3,0 + h(−6x3,0 − 6x1,0 − 10− t0) = 1.5420.

m = 1,

t2 = 0.04,

x1,2 = x1,1 + hx2,1 = 0.1548,

x2,2 = x2,1 + hx3,1 = 0.1708,

x3,2 = x3,1 + h(−6x3,1 − 6x1,1 − 10− t1) = 1.1383.

m = 2,

t3 = 0.06,

x1,3 = x1,2 + hx2,2 = 0.1582,

x2,3 = x2,2 + hx3,2 = 0.1936,

x3,3 = x3,2 + h(−6x3,2 − 6x1,2 − 10− t2) = 0.7823.
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La figura 7 presenta la solución numérica de x1 en el intervalo 0 ≤ t ≤ 1.5.

Figura 7: Solución numérica con el método de Euler vs analı́tica. Elaboración propia.

Caso de estudio 3

La figura 8 muestra un reactor tipo tanque agitado continuo (CSTR), en el cual tiene lugar una se-
cuencia de transformaciones quı́micas modelada mediante un sistema de ecuaciones diferenciales
ordinarias de primer orden (Mostoufi & Constantinides, 2022).

Figura 8: Concentración de solución en el tanque. Elaboración propia.

Las especies x1 y x2 se adicionan de forma individual al primer reactor con un flujo volumétrico cons-
tante de 1 dm3/min. Inicialmente, cada reactor está lleno con un disolvente lı́quido inerte. Las concen-
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traciones iniciales de los reactivos son x1(0) = 1mol/dm3, x2(0) = 1mol/dm3, y x3(0) = 0mol/dm3.
El sistema dinámico se describe como sigue:

dx1
dt

= −x1(t), x1(0) = 1,

dx2
dt

= x1(t)− x2(t), x2(0) = 1,

dx3
dt

= x2(t) + cos(t), x3(0) = 0.

(9)

Note que la tercera ecuación incorpora un término oscilatorio cos(t) que representa una perturbación
externa periódica, como podrı́a ser la adición forzada de un coadyuvante o fuente energética variable
en el tiempo. En este caso de estudio se usca obtener el perfil de concentración de cada especie en fun-
ción del tiempo hasta alcanzar el estado estacionario, mediante simulación numérica. La soluciones
analı́ticas de (10) son x1(t) = exp(−t), x2(t) = t exp(−t), x3(t) = 1−(1+t) exp(−t)+ sin(t)

2 . Determine
la solución en el intervalo 0 ≤ t ≤ 10, con h = 0.2.

Solución. El sistema de ecuaciones (9) puede reescribirse utilizando la notación de función, obte-
niéndose

f1(t, x1(t)) = −x1(t), x1(0) = 1,

f2(t, x1(t), x2(t)) = x1(t)− x2(t), x2(0) = 1,

f3(t, x2(t)) = x2(t) + cos(t), x3(0) = 0.

(10)

Observe que los primeros 4 pasos de la Estrategia D. R-K4 son idénticos que en la Estrategia D. Euler.

En este problema hay un sistema de 3 ecuaciones diferenciales ordinarias lineales de primer orden, el
cual es equivalente a una única ecuación diferencial ordinaria de tercer orden que ha sido linealizada
de acuerdo con (4). Aplicando el paso 5 de la Estrategia D. R-K4 y refiriéndonos a la figura 5 tenemos

k1,1 = f1(tm, x1,m, x2,m, x3,m),

k2,1 = f2(tm, x1,m, x2,m, x3,m),

k3,1 = f3(tm, x1,m, x2,m, x3,m),

k1,2 = f1

(
tm +

h

2
, x1,m +

k1,1h

2
, x2,m +

k2,1h

2
, x3,m +

k3,1h

2

)
,

k2,2 = f2

(
tm +

h

2
, x1,m +

k1,1h

2
, x2,m +

k2,1h

2
, x3,m +

k3,1h

2

)
,

k3,2 = f3

(
tm +

h

2
, x1,m +

k1,1h

2
, x2,m +

k2,1h

2
, x3,m +

k3,1h

2

)
,

k1,3 = f1

(
tm +

h

2
, x1,m +

k1,1h

2
, x2,m +

k2,1h

2
, x3,m +

k3,1h

2

)
,

k2,3 = f2

(
tm +

h

2
, x1,m +

k1,1h

2
, x2,m +

k2,1h

2
, x3,m +

k3,1h

2

)
,

k3,3 = f3

(
tm +

h

2
, x1,m +

k1,1h

2
, x2,m +

k2,1h

2
, x3,m +

k3,1h

2

)
,

k1,4 = f1(tm + h, x1,m + k1,3, x2,m + k2,3, x3,m + k3,3),

k2,4 = f2(tm + h, x1,m + k1,3, x2,m + k2,3, x3,m + k3,3),

k3,4 = f3(tm + h, x1,m + k1,3, x2,m + k2,3, x3,m + k3,3),

x1,m+1 = x1,m +
h

6
(k1,1 + 2k1,2 + 2k1,3 + k1,4),

x2,m+1 = x2,m +
h

6
(k2,1 + 2k2,2 + 2k2,3 + k2,4),

x3,m+1 = x3,m +
h

6
(k3,1 + 2k3,2 + 2k3,3 + k3,4).

(11)
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Es claro el proceso iterativo en el sistema (11).Una vez calculado ennuevo valor dex1,m+1, x2,m+1, x3,m+1

y la actualización de tm, estos valores se utilizan para calcular los nuevos valores de las constantes de
R-K, y el proceso se repite hasta llegar a t = 1.5. A continuación se muestra el desarrollo correspon-
diente a las primeras tres iteraciones

t0 = 0.0000,

x1,0 = 1.0,

x2,0 = 0.0,

x3,0 = 0.0,

k1,1 = f1(t0, x1,0, x2,0, x3,0) = −1.0000,

k2,1 = f2(t0, x1,0, x2,0, x3,0) = 1.0000,

k3,1 = f3(t0, x1,0, x2,0, x3,0) = 0.5000,

k1,2 = f1(t0 + 0.1, x1,0 + 0.1k1,1, x2,0 + 0.1k2,1, x3,m + 0.1k3,1) = −0.9000,

k2,2 = f2(t0 + 0.1, x1,0 + 0.1k1,1, x2,0 + 0.1k2,1, x3,0 + 0.1k3,1) = 0.8000,

k3,2 = f3(t0 + 0.1, x1,0 + 0.1k1,1, x2,0 + 0.1k2,1, x3,0 + 0.1k3,1) = 0.5975,

k1,3 = f1(t0 + 0.1, x1,0 + 0.1k1,1, x2,0 + 0.1k2,1, x3,0 + 0.1k3,1)− 0.9100,

k2,3 = f2(t0 + 0.1, x1,0 + 0.1k1,1, x2,0 + 0.1k2,1, x3,0 + 0.1k3,1) = 0.8300,

k3,3 = f3(t0 + 0.1, x1,0 + 0.1k1,1, x2,0 + 0.1k2,1, x3,0 + 0.1k3,1) = 0.5775,

k1,4 = f1(t0 + 0.1, x1,0 + k1,3, x2,0 + k2,3, x3,0 + k3,3) = −0.8180,

k2,4 = f2(t0 + 0.1, x1,0 + k1,3, x2,0 + k2,3, x3,0 + k3,3) = 0.6520,

k3,4 = f3(t0 + 0.1, x1,0 + k1,3, x2,0 + k2,3, x3,0 + k3,3) = 0.6560,

x1,1 = x1,0 + 0.0333(k1,1 + 2k1,2 + 2k1,3 + k1,4) = 0.8187,

x2,1 = x2,0 + 0.0333(k2,1 + 2k2,2 + 2k2,3 + k2,4) = 0.1637,

x3,1 = x3,0 + 0.0333(k3,1 + 2k3,2 + 2k3,3 + k3,4) = 0.1169.

t1 = 0.2000,

x1,1 = 0.8187,

x2,1 = 0.1637,

x3,1 = 0.1169,

k1,1 = f1(t1, x1,1, x2,1, x3,1) = −0.8187,

k2,1 = f2(t1, x1,1, x2,1, x3,1) = 0.6550,

k3,1 = f3(t1, x1,1, x2,1, x3,1) = 0.6537,

k1,2 = f1(t1 + 0.1, x1,1 + 0.1k1,1, x2,1 + 0.1k2,1, x3,1 + 0.1k3,1) = −0.7369,

k2,2 = f2(t1 + 0.1, x1,1 + 0.1k1,1, x2,1 + 0.1k2,1, x3,1 + 0.1k3,1) = 0.5076,

k3,2 = f3(t1 + 0.1, x1,1 + 0.1k1,1, x2,1 + 0.1k2,1, x3,1 + 0.1k3,1) = 0.7069,

k1,3 = f1(t1 + 0.1, x1,1 + 0.1k1,1, x2,1 + 0.1k2,1, x3,1 + 0.1k3,1) = −0.7450,

k2,3 = f2(t1 + 0.1, x1,1 + 0.1k1,1, x2,1 + 0.1k2,1, x3,1 + 0.1k3,1) = 0.5306,

k3,3 = f3(t1 + 0.1, x1,1 + 0.1k1,1, x2,1 + 0.1k2,1, x3,1 + 0.1k3,1) = 0.6922,

k1,4 = f1(t1 + 0.1, x1,1 + k1,3, x2,0 + k2,3, x3,1 + k3,3) = −0.6697,

k2,4 = f2(t1 + 0.1, x1,1 + k1,3, x2,0 + k2,3, x3,1 + k3,3) = 0.3999,

k3,4 = f3(t1 + 0.1, x1,1 + k1,3, x2,0 + k2,3, x3,1 + k3,3) = 0.7304,

x1,2 = x1,1 + 0.0333(k1,1 + 2k1,2 + 2k1,3 + k1,4) = 0.6703,

x2,2 = x2,1 + 0.0333(k2,1 + 2k2,2 + 2k2,3 + k2,4) = 0.2681,

x3,2 = x3,1 + 0.0333(k3,1 + 2k3,2 + 2k3,3 + k3,4) = 0.2563.
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t1 = 0.4000,

x1,2 = 0.6703,

x2,2 = 0.2681,

x3,2 = 0.2563,

k1,1 = f1(t2, x1,2, x2,2, x3,2) = −0.6703,

k2,1 = f2(t2, x1,2, x2,2, x3,2) = 0.4022,

k3,1 = f3(t2, x1,2, x2,2, x3,2) = 0.7286,

k1,2 = f1(t2 + 0.1, x1,2 + 0.1k1,1, x2,2 + 0.1k2,1, x3,2 + 0.1k3,1) = −0.6033,

k2,2 = f2(t2 + 0.1, x1,2 + 0.1k1,1, x2,2 + 0.1k2,1, x3,2 + 0.1k3,1) = 0.2950,

k3,2 = f3(t2 + 0.1, x1,2 + 0.1k1,1, x2,2 + 0.1k2,1, x3,2 + 0.1k3,1) = 0.7471,

k1,3 = f1(t2 + 0.1, x1,2 + 0.1k1,1, x2,2 + 0.1k2,1, x3,2 + 0.1k3,1) = −0.6099,

k2,3 = f2(t2 + 0.1, x1,2 + 0.1k1,1, x2,2 + 0.1k2,1, x3,2 + 0.1k3,1) = 0.3124,

k3,3 = f3(t2 + 0.1, x1,2 + 0.1k1,1, x2,2 + 0.1k2,1, x3,2 + 0.1k3,1) = 0.7364,

k1,4 = f1(t2 + 0.1, x1,2 + k1,3, x2,2 + k2,3, x3,2 + k3,3) = −0.5483,

k2,4 = f2(t2 + 0.1, x1,2 + k1,3, x2,2 + k2,3, x3,2 + k3,3) = 0.2177,

k3,4 = f3(t2 + 0.1, x1,2 + k1,3, x2,2 + k2,3, x3,2 + k3,3) = 0.7433,

x1,3 = x1,2 + 0.0333(k1,1 + 2k1,2 + 2k1,3 + k1,4) = 0.5488,

x2,3 = x2,2 + 0.0333(k2,1 + 2k2,2 + 2k2,3 + k2,4) = 0.3293,

x3,3 = x3,2 + 0.0333(k3,1 + 2k3,2 + 2k3,3 + k3,4) = 0.4042.

La figura 9muestra el comportamiento de las especies x1, x2 y x3 a lo largo del tiempo en un sistema de
tres reactores continuos en serie. Se observa que las concentraciones de las especies x1 y x2 disminuyen
progresivamente conforme avanza la reacción, lo cual refleja su transformación a lo largo de las etapas
del proceso. Inicialmente, x1 y x2 se encuentran presentes en concentraciones iguales, pero con el paso
del tiempo, x1 se consume primero, dando lugar a la generación de x2, que posteriormente también
disminuye.

Por suparte, la especiex3, que representa el producto final, incrementa su concentración con el tiempo,
indicando que el sistema favorece su formación. Este incremento no es completamente lineal, ya que
presenta un comportamiento oscilatorio como resultado de la perturbación externa modelada por el
término en su ecuación diferencial. Esta oscilación refleja la influencia directa de una fuente periódica
externa sobre la acumulación de x3, incluso cuando las especies x1 y x2 tienden a agotarse.

Asimismo, la figura 9 muestra una comparación entre el comportamiento de las especies x1 y x2 obte-
nido mediante métodos numéricos y aquel obtenido de forma exacta a partir de soluciones analı́ticas
reportadas en la literatura.
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Figura 9: Solución numérica con R-K4 vs analı́tica. Elaboración propia.

Caso de estudio 4

Resolver la ecuación diferencial de tercer orden con condiciones iniciales dada por

d3

dt3
y(t) + 6

d2

dt2
y(t) + 11

d

dt
y(t) + 6y(t) = 10 exp

(
−1

2
t
)
,

y(0) = 0.15, y′(0) = 0.1, y′′(0) = 2.

(12)

La solución exacta es

f(t) = 1.06666667 exp(−0.500000000x) + 0.0110741428 exp(−5.25667409x)−
0.927740872 exp(−0.371662953x) cos(1.39801451x) + 0.2.

Solución. Aplicando los primeros 4 pasos de la Estrategia D. R-K4 obtenemos la linealización de la
ODE en un sistema de ecuaciones.

dx3
dt

= −6x3 − 6x2 − 11x1 + 10 exp(−1

2
t),

dx2
dt

= x3,

dx1
dt

= x2.

Las variables son x1, x2, x3, t. Al asignar el subı́ndicem a las variables y a las condiciones iniciales con
m = 0 obtenemos x1,0 = 0.15, x2,0 = 0.1, x3,0 = 2, t0 = 0. Los pasos 5 y 6 son los mismos descritos
en el caso de estudio 3 y presentados por el sistema (11). La figura 10 muestra la comparación de la
solución numérica contra la solución exacta.
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Figura 10: Solución numérica con R-K4 vs analı́tica. Elaboración propia.

7. Discusión

En esta investigación se analizaron distintos artı́culos educativos y cientı́ficos enfocados en métodos
numéricos para la resolución de ecuaciones diferenciales con condiciones iniciales. En general, estos
trabajos abordan esos métodos de solución como Euler y R-K. Por un lado, los artı́culos cientı́ficos
mencionan que para su solución han utilizado comandos inter-construidos de software matemático
como Maple, MATLAB y Mathematica, que resuelven numéricamente las ecuaciones. Por otro lado,
los artı́culos educativos abordan los problemas clásicos que generalmente aparecen en los libros. Re-
ferente a los textos de análisis numérico también se revisaron varios ejemplares incluyendo versiones
previas de mismos autores. Se observó que los textos aparece generalmente el ejemplo cásico de una
ODE de primer orden. Asimismo, los artı́culos educativos y libros de texto no suelen ofrecer propues-
tas didácticas especı́ficas con el fin de facilitar el aprendizaje de los métodos de Euler y Runge-Kutta.

En este trabajo se han citado libros ampliamente reconocidos como base en la enseñanza del análisis
numérico dentro de las licenciaturas en ciencias e ingenierı́a (Burden& Faires, 2011; Chapra&Canale,
2011; Gerald, 1997). Por otro lado, textos especializados como el de Rapp (2017), dirigidos al campo
de las ciencias quı́micas, suelen dar por sentado que el estudiante posee una formación sólida y un
razonamiento abstracto bien desarrollado, necesarios a fin de comprender los temas abordados.

Merece la pena poner atención en la implementación de la Estrategia Didáctica R-K4. Después de
obtener el sistema de ecuaciones que linealiza la ODE de orden superior, con las respetivas variables
x1, x2, . . . , x3 , a primera vista se puede pensar que si f1(x2) = x2 y f2(x3) = x3 entonces deberı́amos
tener, por ejemplo, para el caso de k1, las constantes k1,1 = f1(x2) y para k2,1 = f2(x3), etc. Sin em-
bargo, este razonamiento nos llevarı́a a particularizar la Estrategia Didáctica R-K4. Expresarla de la
manera en cómo aparece en la figura 5, nos permite resolver cualquier sistema de ecuaciones, lineales
y de orden superior. En relación con la Estrategia Didáctica R-K4, conviene señalar que la figura 5 se
utiliza como recurso pedagógico, ya que apoya visualmente a los estudiantes en la comprensión paso
a paso del método.

En la práctica se debe utilizar una estrategia de implementación con el fin de simplificar pasos repe-
titivos en el cálculo de las constantes k1,1, . . . , kn,1, por dar un ejemplo. En la figura 11 se presenta
de manera gráfica una implementación donde simplifican cáculos repetitivos. Se han utilizado las
variables c1, c2, . . . , cn con el objetivo de simplificar este hecho.

Algunos ejemplares de ecuaciones diferenciales dedican una sección para introducir algunosmétodos
numéricos como el método de Euler y R-K orden 4, como el libro de los autores Edwards y Penney
(2009). En tı́tulos que son un referente en las clases de ecuaciones diferenciales y análisis numérico
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Figura 11: Estrategia didáctica optimizada R-K 4. Elaboración propia.

como Burden y Faires (2011), Chapra y Canale (2011), Edwards y Penney (2009) y Gerald (1997)
se presenta la implementación de la figura 11 en pseudocódigos en cada una de las subsecciones, y
en el caso de Edwards y Penney (2009) se incluyen programas con esta implementación. Estas obras
literarias no dan mayores detalles del por qué se debe utilizar esta implementación y esto se debe al
DME, que impone significados en los libros y en las clases dentro del salón de clase.

Una de las razones es precisamente evitar hacer cálculos repetitivos, la cual se puede intuir demanera
visual. La otra razón, quizás la más importante, es que al simplicar estos cálculos se optimizan tiem-
pos de cómputo en la ejecución del programa codificado, independientemente del lenguaje de pro-
gramación elegido (ver Apéndice B). Por otro lado, las funciones intrı́nsecas que se implementan en
cualquier lenguaje de programación como las funciones trigonométricas circulares también requieren
tiempo cómputo en su evaluación. En Sandoval-Hernández et al. (2023) se realizó una comparación
en tiempos de cómputo en las funciones intrı́nsecas de Fortran 90 utilizando compilador GNU gfor-
tran. Se encontró que de las funciones trascendentes la que más tardó en ejecutarse fue la función
logaritmo y exponencial natural. En ese estudio, también se calculó la evaluación de las funciones
hiperbólicas obteniendo algunas ellas tiempos superiores a la función logaritmo, sin embargo, debe
considerarse que estas funciones son una combinación de funciones exponenciales. Note que el últi-
mo caso de estudio presentado corresponde a una ecuación diferencial de tercer orden que incluye en
su estructura una función exponencial. Por ello, resulta útil implementar la estrategia didáctica opti-
mizada, con el propósito de reducir los tiempos de cómputo. Con fines de comparación, la ecuación
(12) fue resuelta utilizando ambas implementaciones mostradas en las figuras 5 y 11, obteniéndose
tiempos de cómputo de 221.080µs y 159.148µs, respectivamente. Es importante advertir las diferen-
cias de tiempo obtenidas. En el Apéndice B se listan las rutinas escritas en Fortran 90, ejecutadas en la
computadora Raspberry Pi 1, correspondientes al caso de estudio 4. Dichas rutinas pueden adaptarse
con el propósito de medir los tiempos de cómputo empleados en los demás casos de estudio.

La aplicación de la Estategia D. Euler y Estategia D. R-K4 en el curso demétodos numéricos al grupo
experimental se aplicó demanera semanal, con cinco horas a la semana. El grupo experimental estaba
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conformado por 6mujeres y 24 hombres,mientras que el grupo de control por 2mujeres y 29 hombres.
El docente que aplicó las estrategias didácticas en el grupo experimental tenı́a 14 años de experiencia
docente, mientras que el docente que aplicó la metodologı́a de enseñanza habitual tenia 16 años de
experiencia. En la figura 12 se presentan los resultados obtenidos de manera porcentual al final de la
aplicación de las estrategias didácticas.
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Figura 12: Estadı́sticas de la aplicación de las estrategias didácticas. Elaboración pro-
pia.

La figura 12 muestra la comparación de los resultados obtenidos por los estudiantes por reactivo,
en los grupos experimental y de control respectivamente En general los resultados obtenidos por el
grupo experimental fueron muy superiores en relación al grupo de control. El criterio de revisión
era que cada acierto del examen tenı́a que ser resuelto correctamente en su totalidad. Los estudiantes
del grupo experimental, en general fueron capaces de descomponer las ecuaciones diferenciales de
orden superior en sistemas de ecuaciones lineales para aplicarles los métodos numéricos ME y R-K4.
El reactivo que tuvo una frecuencia más baja, fue el 3, en donde 3 alumnos no respondieron correc-
tamente, obteniéndose el 90%. Al finalizar, la evaluación se les preguntó a los alumnos que elemento
de la estretagia les ayudó a comprender los procedimientos. En general, mencionaron que las figuras
4 y 5 que acompaña las estregias Estategia D. Euler y Estategia D. R-K4 les ayudaron a visualizar y
comprender los procedimientos durante la resolución de ejercicios vistos en clase. Cabe mencionar
que los dos docentes que participaron en los grupos de experimental y de control tenı́an casi la misma
experiencia dando la asignatura de métodos numéricos. A pesar que la experiencia docente juega un
papel importante en la enseñanza de cualquier asignatura, contar con estrategias didácticas mejora el
aprendizaje de los alumnos, como se puede observar las frecuencias porcentuales en ambos grupos,
en la figura 12.

8. Conclusiones

En este artı́culo se propusieron dos estrategias didácticas: una enfocada en el método de Euler y otra
en el método de Runge-Kutta de cuarto orden. Además, se diseñaron y llevaron a cabo actividades
orientadas a su aplicación práctica en el aula. Los resultados obtenidos muestran que las estrategias
propuestas en este trabajo le facilitan al profesor su práctica docente dentro del salón de clase en la
enseñanza de los métodos de Euler y Runge-Kutta cuando se tienen ecuaciones ordinarias de orden
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superior. Por otro lado, a los estudiantes les facilita el aprendizaje en estos procedimientos que los
libros no muestran, ası́ como artı́culos de investigación, evitando dejar deficiencias y permitiéndoles
implementar sus ideas al momento de escribir sus propias rutinas en el lenguaje de programación de
su interés.

Asimismo, este trabajo abordó el tema del tiempo de cómputo, un aspecto de gran relevancia que
comúnmente es omitido en los libros de texto. Para destacar su importancia, se realizaron dos compa-
raciones utilizando diferentes implementaciones, con el objetivo de medir los tiempos de ejecución.
Estas pruebas permitieron demostrar cómo una codificación eficiente, que evita cálculos redundan-
tes, puede optimizar significativamente el desempeño computacional. Los resultados reportados nos
muestran que la reducción del tiempo para el caso de estudio, en particular, fue aproximadamente un
30%. Esta implementación cobra importancia cuando se disponen de dispositivos de cómputo limi-
tados, o cuando la complejidad de la ecuación es mayor incorporando más operaciones algebraicas o
más funciones.

Contribución de las personas autoras:Conceptualización: M.A.S.H.Metodologı́a: F.I.M.H. Software:
H.J.I., H.V.L. Investigación: J.J.V.L., Visualización: S.E.T.B, J.J.V.L.. Análisis formal: M.A.S.H., F.I.M.H.
Validación:H.J.I. Escritura-borrador original: F.I.M.H.,M.A.S.H. Escritura-revisión y edición:M.A.S.H.,
H.V.L.

Accesibilidad de datos: Los resultados obtenidos en los casos de estudio presentados en este artı́culo
pueden replicarse utilizando la información presentada en el apéndice B.
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Jiménez-Islas, H., Calderón-Ramı́rez, M., Martı́nez-González, G. M., Calderón-Álvarado, M. P., &
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A. Apéndice

Instrumento aplicado para recolección de datos
Nombre del estudiante:
Fecha:

Instrucciones: Resuelve los ejercicios que se presentan a continuación.

1. Resuelva la siguiente ecuación diferencial utilizando el método de Euler con paso h = 0.1.

d2y(x)

dx2
+ 9

dy(x)

dx
+ 10y(x) = 10

Condiciones iniciales:

y(0) = 3, y′(0) = 2

2. Resuelva la siguiente ecuación diferencial utilizando el método de Euler con paso h = 0.1.

d3Q(x)

dx3
+ 6

d2Q(x)

dx2
+ 11

dQ(x)

dx
+ 6Q(x) = e−3x

Condiciones iniciales:

Q(0) = 1, Q′(0) = −0.5, Q′′(0) = 2.2

3. Resuelva el siguiente sistema de ecuaciones diferenciales utilizando el método de Runge-Kutta de cuarto orden con paso h = 0.1.

Condiciones iniciales:

CA(0) = 1, CB(0) = 0, CC(0) = 0

Sistema de ecuaciones:

d

dt
CA(t) = −0.5CA(t)

d

dt
CB(t) = 0.5CA(t)− 0.25CB(t)

d

dt
CC(t) = 0.25CB(t)

4. Resuelva la siguiente ecuación diferencial utilizando el método de Runge-Kutta de cuarto orden con paso h = 0.1.

d3Q(x)

dx3
+ 6

dQ(x)

dx
+ 11Q(x)− 5e−x = 0

Condiciones iniciales:

Q(0) = 0.15, Q′(0) = 0.1, Q′′(0) = 0.5

B. Apéndice

! Este programa mide tiempos de computo
program rk4˙solver
implicit none

! Variables
real :: t, tf, h, x1, x2, x3
real :: k11, k21, k31, k12, k22, k32, k13, k23, k33, k14, k24, k34
integer :: n, i, ii, maxiter
real :: start, finish, tt
real :: f1,f2,f3



28 REFERENCIAS

maxiter=1000
! Parameters

tf = 10.0
h = 0.2
n = int(tf / h) + 1

call cpu˙time(start)
do ii = 1, maxiter
! Initial conditions

x1 = 0.15
x2 = 0.1
x3 = 2.0
t = 0.0

! Imprime valores iniciales!!!!!!!!!!!!!!
! Descomenta estos prints para visualizar
! valores iniciales
! print *, ”t”, ”x1”, ”x2”, ”x3”
! print *, t, x1, x2, x3

do i = 1, n
! K1

k11 = f1(t, x1, x2, x3)
k21 = f2(t, x1, x2, x3)
k31 = f3(t, x1, x2, x3)

! K2
k12 = f1(t + h / 2.0, x1 + h * k11 / 2.0, x2 + h * k21 / 2.0, x3 + h * k31 / 2.0)
k22 = f2(t + h / 2.0, x1 + h * k11 / 2.0, x2 + h * k21 / 2.0, x3 + h * k31 / 2.0)
k32 = f3(t + h / 2.0, x1 + h * k11 / 2.0, x2 + h * k21 / 2.0, x3 + h * k31 / 2.0)

! K3
k13 = f1(t + h / 2.0, x1 + h * k12 / 2.0, x2 + h * k22 / 2.0, x3 + h * k32 / 2.0)
k23 = f2(t + h / 2.0, x1 + h * k12 / 2.0, x2 + h * k22 / 2.0, x3 + h * k32 / 2.0)
k33 = f3(t + h / 2.0, x1 + h * k12 / 2.0, x2 + h * k22 / 2.0, x3 + h * k32 / 2.0)

! K4
k14 = f1(t + h, x1 + h * k13, x2 + h * k23, x3 + h * k33)
k24 = f2(t + h, x1 + h * k13, x2 + h * k23, x3 + h * k33)
k34 = f3(t + h, x1 + h * k13, x2 + h * k23, x3 + h * k33)

! Update variables
x1 = x1 + (h / 6.0) * (k11 + 2.0 * k12 + 2.0 * k13 + k14)
x2 = x2 + (h / 6.0) * (k21 + 2.0 * k22 + 2.0 * k23 + k24)
x3 = x3 + (h / 6.0) * (k31 + 2.0 * k32 + 2.0 * k33 + k34)

t = t + h

! Imprime resultados
! Descomenta para ver valores
! print *, t, x1, x2, x3

end do

! Comenta este ciclo externo para ver valores
! y descomenta los prints
end do
!print *, t, x1, x2, x3
call cpu˙time(finish)
tt=((finish-start)/maxiter)*1000000
write( *,”( 0PF14.8)” ) tt
end program rk4˙solver

function f1(t, x1, x2, x3) result(f)
real, intent(in) :: t, x1, x2, x3
real :: f

! Usa la linea de abajo si el compilador genera variables dummy
! f = x2+0*(t+x1+x3)

f = x2
end function f1

function f2(t, x1, x2, x3) result(f)
real, intent(in) :: t, x1, x2, x3
real :: f

! Usa la linea de abajo si el compilador genera variables dummy
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f = x3+0*(t+x2+x1)

f = x3
end function f2

function f3(t, x1, x2, x3) result(f)
real, intent(in) :: t, x1, x2, x3
real :: f
f = -6.0 * x3 - 6.0 * x2 - 11.0 * x1 + 10.0 * exp(-0.5 * t)

end function f3

======================================================================
! Este programa mide tiempos de computo
! optimizando tiempos de computo
program rk4˙solverT
implicit none

! Variables
real :: t, tf, h, x1, x2, x3, Ti
real :: k11, k21, k31, k12, k22, k32, k13, k23, k33, k14, k24, k34
real :: cn1, cn2, cn3, hp
real :: start, finish, tt
real :: f1,f2,f3
integer :: i,ii, n, maxiter

maxiter=1000
! Parameters

tf = 10.0
h = 0.2
n = int(tf / h) + 1

call cpu˙time(start)
do ii = 1, maxiter
! Initial conditions

x1 = 0.15
x2 = 0.1
x3 = 2.0
t = 0.0
ti = 0.0
hp = 0.0

! Imprime valores iniciales!!!!!!!!!!!!!!
! Descpmenta estos prints para visualizar
! valores iniciales
! print *, ”t”, ”x1”, ”x2”, ”x3”
! print *, t, x1, x2, x3

do i = 1, n
! K1

k11 = f1(t, x1, x2, x3)
k21 = f2(t, x1, x2, x3)

k31 = f3(t, x1, x2, x3)

! K2
cn1 = x1 + h * k11 / 2.0
cn2 = x2 + h * k21 / 2.0
cn3 = x3 + h * k31 / 2.0
Ti = t + h / 2.0
k12 = f1(Ti, cn1, cn2, cn3)
k22 = f2(Ti, cn1, cn2, cn3)
k32 = f3(Ti, cn1, cn2, cn3)

! K3
cn1 = x1 + h * k12 / 2.0
cn2 = x2 + h * k22 / 2.0
cn3 = x3 + h * k32 / 2.0
k13 = f1(Ti, cn1, cn2, cn3)
k23 = f2(Ti, cn1, cn2, cn3)
k33 = f3(Ti, cn1, cn2, cn3)

! K4
cn1 = x1 + h * k13
cn2 = x2 + h * k23
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cn3 = x3 + h * k33
Ti = t + h
k14 = f1(Ti, cn1, cn2, cn3)
k24 = f2(Ti, cn1, cn2, cn3)
k34 = f3(Ti, cn1, cn2, cn3)

! Update values
hp = (h) / 6.0
x1 = x1 + hp * (k11 + 2.0 * (k12 + k13) + k14)
x2 = x2 + hp * (k21 + 2.0 * (k22 + k23) + k24)
x3 = x3 + hp * (k31 + 2.0 * (k32 + k33) + k34)

t = t + h

! Imprime resultados
! Descomenta para ver valores
! print *, t, x1, x2, x3

end do

! Comenta este ciclo externo para ver valores
! y descomenta los prints
end do

! print *, t, x1, x2, x3
call cpu˙time(finish)
tt=((finish-start)/maxiter)*1000000
write( *,”( 0PF14.8)” ) tt
end program rk4˙solverT

function f1(t, x1, x2, x3) result(f)
real, intent(in) :: t, x1, x2, x3
real :: f

! Usa la linea de abajo si el compilador genera variables dummy
f = x2+0*(t+x1+x3)

f = x2
end function f1

function f2(t, x1, x2, x3) result(f)
real, intent(in) :: t, x1, x2, x3
real :: f

! Usa la linea de abajo si el compilador genera variables dummy
f = x3+0*(t+x2+x1)

f = x3
end function f2

function f3(t, x1, x2, x3) result(f)
real, intent(in) :: t, x1, x2, x3
real :: f
f = -6.0 * x3 - 6.0 * x2 - 11.0 * x1 + 10.0 * exp(-0.5 * t)

end function f3
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