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Resumen: La programación de horarios en instituciones educativas constituye un problema de opti-
mización combinatoria cuyo objetivo es asignar cursos, docentes, aulas y bloques de tiempo bloques
de tiempo de manera coordinada, respetando un conjunto de restricciones. Este artı́culo presenta una
introducción al modelado matemático de dicho problema, diferenciando restricciones estrictas (hard
constraints) y flexibles (soft constraints), ası́ como la definición de conjuntos, parámetros y funcio-
nes objetivo que permiten estructurar formalmente el modelo. Se presentan tres ejemplos ilustrativos
que muestran cómo la variación en los pesos asignados a preferencias y penalizaciones, junto con la
reasignación puntual de eventos, impacta directamente el valor de la función objetivo. Los ejemplos
evidencian que el equilibrio entre criterios y pequeños ajustes en las asignaciones pueden mejorar
de forma significativa la calidad de los horarios generados. Este trabajo constituye una introducción
didáctica y un punto de partida para investigaciones futuras orientadas al abordaje del problema de
programación de horarios.

Palabras Clave: Optimización combinatoria, asignación de recursos, programación de horarios.

Abstract: Timetabling in educational institutions is a combinatorial optimization problemwhose ob-
jective is to assign courses, instructors, classrooms, and time slots in a coordinated manner while
satisfying a set of constraints. This article introduces the mathematical modeling of such a problem,
distinguishing between hard and soft constraints, and formalizing the definition of sets, parameters,
and objective functions that structure themodel. Three illustrative examples are presented to demons-
trate how variations in the weights assigned to preferences and penalties, together with the punctual
reassignment of events, directly affect the objective function value. These examples show that balan-
cing criteria and implementing minor adjustments in the allocations can significantly improve the
quality of the generated timetables. This work provides a didactic introduction and a starting point
for future research aimed at addressing the academic timetabling problem.
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Resumo: Aprogramacão de horários em instituições educativas constitui umproblemade otimização
combinatória cujo objetivo é atribuir cursos, docentes, salas e blocos de tempo de forma coordena-
da, respeitando um conjunto de restrições. Este artigo apresenta uma introdução ao modelamento
matemático desse problema, diferenciando restrições estritas (hard constraints) e flexı́veis (soft cons-
traints), assim como a definição de conjuntos, parâmetros e funções objetivo que permitem estruturar
formalmente omodelo. São apresentados três exemplos ilustrativos quemostram como a variação nos
pesos atribuı́dos a preferências e penalizações, junto com a reatribuição pontual de eventos, impac-
ta diretamente o valor da função objetivo. Os exemplos evidenciam que o equilı́brio entre critérios e
pequenos ajustes nas atribuições podemmelhorar de forma significativa a qualidade dos horários ge-
rados. Este trabalho constitui uma introdução didática e um ponto de partida para futuras pesquisas
orientadas ao abordamento do problema de programacão de horários.

Palavras-chave: Otimização combinatória, atribuição de recursos, programação de horários.

1. Introducción

La programación de horarios en instituciones educativas constituye un problema de optimización
combinatoria cuyo objetivo es asignar cursos, docentes, aulas y bloques de tiempo bloques de tiempo
de manera coordinada, respetando un conjunto de restricciones. No obstante, la mayorı́a de los traba-
jos en este campo se dirigen a investigadores con experiencia enmodeladomatemático y en algoritmos
de optimización. En este contexto, el presente artı́culo propone una introducción accesible a la formu-
lación de problemas de programación de horarios, con énfasis en los primeros pasos, definición de
conjuntos, parámetros fundamentales, las restricciones y los ejemplos de funciones objetivo.

El propósito central de este trabajo es ofrecer una base estructurada para el modelado de este tipo
de problemas, de modo que los lectores puedan comprender sus principales desafı́os y, al mismo
tiempo, obtener una primera aproximación a los enfoques disponibles para su resolución en el marco
del estado del arte. A través de explicaciones, se busca contribuir a cerrar la brecha existente entre la
teorı́a y la práctica en la optimización de horarios educativos.

La programación de horarios es un problema recurrente en las instituciones educativas y organizacio-
nes empresariales (Hernández et al., 2008). Este desafı́o se debe a la necesidad de coordinar múltiples
restricciones, como la disponibilidad de recursos fı́sicos (aulas), la carga académica del personal do-
cente, cursos ofrecidos, distancia entre aulas y las preferencias de los docentes o estudiantes, todo
dentro de un intervalo de tiempo definido (Burke & Petrovic, 2002; Córdoba, 2018; Mejı́a & Paternina,
2010).

En la mayorı́a de instituciones educativas la resolución del problema de programación de horarios se
realiza de manera manual, el cual es un proceso que puede extenderse durante varios dı́as o incluso
semanas. Este método convencional limita significativamente el análisis a un subconjunto de posibles
soluciones, restringiendo ası́ la capacidad de encontrar opciones óptimas (Cleger Tamayo et al., 2007;
Córdoba, 2018). Además, la asignación manual de horarios usualmente requiere la dedicación de
una o varias personas, quienes deben garantizar que se cumplan, al menos, las condiciones mı́nimas
establecidas por la institución. Sin embargo, este método incrementa la carga administrativa y puede
dar lugar a ineficiencias en la asignación de recursos académicos (Alghamdi et al., 2020; Bashab et
al., 2023). En este sentido, la solución a este problema requiere enfoques que permitan encontrar
soluciones factibles en tiempos razonables.

En la programación de horarios, surgen interrogantes crı́ticas, como: ¿qué técnica es más efectiva para
abordar este desafı́o, un método exacto o aproximado? ¿Es factible garantizar que el método seleccio-
nado proporcione una solución viable en un tiempo computacional razonable? Si bien la literatura
especializada no ofrece un consenso definitivo sobre estas cuestiones, sin embargo, numerosos estu-
dios han clasificado este problema como NP-completo, debido a la complejidad combinatoria de sus
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restricciones y al elevado costo computacional asociado a su resolución (Floyd, 1967; López-Cruz,
2015).

Incluso en su forma más sencilla, el problema de programación de horarios se clasifica como NP-
completo, lo que significa que evaluar todas las combinaciones posibles para encontrar la solución
óptima resulta impracticable en problemas de gran escala (Even et al., 1976). Esta clasificación implica
que encontrar soluciones óptimas mediante métodos exactos es computacionalmente inviable para
problemas de gran escala. Por esta razón, es necesario explorar métodos alternativos que permitan
abordar este desafı́o de manera eficiente.

Debido a la complejidad inherente del problema, los métodos aproximados, entre ellos heurı́sticas,
metaheurı́sticas ymatheurı́sticas1 , constituyen una alternativa eficaz para obtener soluciones factibles
y de buena calidad en tiempos computacionalmente razonables (Bashab et al., 2023; González et al.,
2020; Saltos & Benavides, 2021). Aunque no garantizan encontrar soluciones óptimas, estos enfoques
son capaces de obtener resultados aceptables con un uso razonable de recursos computacionales. En
contraste, losmétodos exactos, que realizan búsquedas exhaustivas, consumenuna cantidad significa-
tiva de recursos computacionales, lo que dificulta su aplicación en problemas de gran escala (Bashab
et al., 2023; Restrepo & Moreno, 2011).

2. Estado del arte

El desarrollo de un modelo orientado a la obtención de soluciones óptimas en problemas de asig-
nación de recursos requiere un análisis de las investigaciones previas en el área. Dicho análisis tiene
como propósito identificar las técnicas más relevantes y apropiadas, disponibles en la literatura para
abordar este tipo de problemas.

Entre las técnicas empleadas para resolver problemas de asignación de recursos y, en particular, de
programación horaria, se distinguen dos enfoques principales: los métodos exactos y los métodos
aproximados. A continuación, se describen algunas caracterı́sticas y aplicaciones en la literatura.

Métodos exactos: Estos métodos garantizan la obtención de la solución óptima del problema, ya que
exploran de manera sistemática el espacio de búsqueda o aplican algoritmos matemáticos que ase-
guran optimalidad bajo determinadas condiciones. Se consideran algoritmos completos, aunque su
desempeño suele verse limitado ante instancias de gran escala debido al crecimiento exponencial de
la complejidad computacional (Guerra Cubillos et al., 2013).

En el contexto de la programación de horarios académicos, destacan enfoques como la programa-
ción lineal entera, la programación lineal y los algoritmos de ramificación y acotamiento (Branch and
Bound). Por ejemplo, Saltos y Benavides (2021) proponen un modelo de programación lineal entera
para la calendarización de cursos universitarios en una institución privada de Ecuador, cuyo objetivo
fue optimizar la asignación de aulas y la distribución de materias durante el semestre. La compa-
ración entre la planificación manual y el modelo propuesto evidenció mejoras significativas en los
horarios, como: reducción del tiempo de planificación y una distribución más equilibrada de la carga
académica.

De manera similar, Canseco et al. (2016) aplicaron un modelo de programación lineal entera resuelto
mediante Branch and Bound, implementado en el software de optimización LINGO® 10. El modelo
abordó un problema con 735 variables enteras y 471 restricciones, logrando una solución en apenas
4 segundos. De esta manera, se redujo un trabajo que tradicionalmente tomaba semanas a un tiempo
computacional mı́nimo, mejorando sustancialmente la asignación de recursos de la institución.

Métodos aproximados: Estos métodos no garantizan la obtención de la solución óptima global, sino
1Es un enfoque que combina técnicas exactas y heurı́sticas.
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que buscan soluciones de alta calidad en tiempos razonables, lo que resulta particularmente útil en
problemas de gran escala o alta complejidad combinatoria. Se consideran algoritmos incompletos por-
que exploran solo una parte del espacio de búsqueda, aunque su flexibilidad y eficiencia práctica los
hacen ampliamente utilizados en la programación horaria (Burke & Petrovic, 2002;Mejı́a & Paternina,
2010).

Dentro de este grupo se incluyen las heurı́sticas, metaheurı́sticas y otros enfoques inspirados en pro-
cesos naturales o técnicas de inteligencia artificial. Algunos ejemplos aplicados a la programación
académica son la colonia de hormigas, las redes neuronales artificiales, el recocido simulado (Simu-
lated Annealing), la búsqueda tabú (Tabu Search) y los algoritmos genéticos.

Bustos et al. (2014) implementaron una metaheurı́stica inspirada en los principios de la evolución
biológica, empleando mecanismos como la selección natural y la reproducción, con el fin de resolver
el problemade calendarización enuna institución universitaria deChile. El objetivo de la investigación
fue reducir los tiempos de planificación de horarios,minimizando almismo tiempo el incumplimiento
de las restricciones establecidas.

De manera similar, el trabajo de Restrepo y Moreno (2011) tuvo como objetivo implementar una me-
taheurı́stica basada en la Búsqueda Tabú, con el fin de proporcionar una solución parametrizable,
eficiente y de rápida ejecución para el problema de calendarización. Esta propuesta estuvo orientada
a optimizar la asignación académica, beneficiando tanto la labor docente como la experiencia de los
estudiantes en la institución educativa. En el caso de los docentes, se garantizó que las cargas académi-
cas fueran asignadas conforme a su disponibilidad y perfil profesional. En cuanto a los estudiantes,
se procuró que los horarios no presentaran traslapes entre cursos y que las clases se organizaran de
manera consecutiva.

Algunos de los estudios más recientes que abordan la programación de horarios son: Dünke y Nic-
kel (2023), Rezaeipanah et al. (2020), Siew et al. (2024) y Bashab et al. (2023). El primero, se aplicó
en el Instituto Tecnológico de Karlsruhe en Alemania, se enfocó en una matheurı́stico utilizando un
algoritmo genético combinado con programación entera para optimizar la asignación de clases. El
segundo trabajo presenta un enfoque hı́brido para la programación de horarios universitarios, ba-
sado en un algoritmo genético paralelo mejorado, combinado con búsqueda local, cuyo propósito es
mejorar la asignación de horarios y aulas para los cursos, garantizando el cumplimiento de las restric-
ciones estrictas2 (hard constraints) y favoreciendo el cumplimiento de las restricciones flexibles3 (soft
constraints). Por su parte, los dos últimos trabajos corresponden a revisiones de la literatura reciente
sobre las metodologı́as aplicadas para resolver el problema de programación de horarios en el ámbito
universitario.

A partir de la revisión de la literatura, la resolución del problema de calendarización de cursos univer-
sitarios sigue siendo un desafı́o vigente, conmúltiples estudios que exploran distintas metodologı́as y
enfoques de optimización publicados hasta la fecha. En este trabajo, se adopta un enfoque que propor-
ciona una guı́a para la formulación de problemas de programación horaria, mediante la presentación
de restricciones, parámetros y funciones objetivo que pueden ser considerados en la planificación
académica. Esta guı́a busca ofrecer una perspectiva estructurada que facilite la comprensión de los
elementos clave del modelo y sirva como referencia para futuras investigaciones.

3. Elementos clave para la programación horaria

Para modelar y resolver un problema de programación horaria de manera eficiente, primero se debe
comprender los elementos que lo componen. Estos elementos se organizan en conjuntos, que repre-

2Deben cumplirse obligatoriamente (ej. un curso no puede asignarse a dos aulas al mismo tiempo).
3Deseables, pero pueden violarse con penalización en la función objetivo (ej. preferencia de un docente por un aula

especı́fica).
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sentan los distintos componentes involucrados en la asignación de horarios. Sin embargo, la comple-
jidad del problema está relacionada directamente con la cantidad de elementos y las restricciones que
regulan cómo estos conjuntos interactúan entre sı́.

En las siguientes secciones, se presentan los conjuntos, parámetros y restricciones más comunes en
la programación horaria, ası́ como su importancia en la construcción de un modelo de programación
horaria.

3.1. Definición de conjuntos fundamentales

La definición de los conjuntos constituye un paso fundamental en la modelación del problema de
programación horaria, ya que permite estructurar de manera ordenada los elementos involucrados
en la asignación de recursos. Dichos conjuntos representan los componentes principales del problema
como: cursos, docentes, aulas y bloques horarios, y establecen la base para la formulación tanto de las
restricciones como de la función objetivo. A continuación, se ilustran algunos conjuntos que pueden
emplearse en la formulación de un modelo.

1. C = {1, 2, . . . , j}: conjunto de cursos de la institución.

Ejemplo 1

1: Matemática General, 2: Cálculo I y 3: Cálculo II.

2. Para cada curso j ∈ C, se define el conjunto de eventos asociados como Cj .

Ejemplo 2

C1: Matemática General, C2: Cálculo I y C3: Cálculo II.

3. Cada curso Cj puede dividirse en eventos (secciones, grupos), representados por eij , donde el
subı́ndice i identifica el evento y j el curso.

Ejemplo 3

Cinco eventos del cursoC1:MatemáticaGeneral se representan como e11 (MatemáticaGeneral-
01), e21 (Matemática General-02), e31 (Matemática General-03), e41 (Matemática General-04)
y e51 (Matemática General-05).
En este caso, C1 = {e11, e21, e31, e41, e51}. De manera general, el conjunto de eventos asociados
al curso Cj se expresa como Cj = {e1j , e2j , . . . , emj}.

4. E el conjunto de todos los eventos posibles definidos en la institución. A partir de él es posible
definir subconjuntos especı́ficos según sus caracterı́sticas. Por ejemplo, los eventos con duración
de tres y cuatro horas pueden agruparse en E3 ⊆ E y E4 ⊆ E, respectivamente.
También puede considerarse un subconjunto de eventos preasignados, Epre ⊂ E, que incluye
aquellos cuya asignación ha sido determinada previamente por la dirección del departamento o
la persona encargada de la calendarización. Esta preasignación puede justificarse por la idonei-
dad del docente para impartir un evento particular o por las caracterı́sticas del aula requerida.

5. P = {1, 2, . . . , p}: conjunto de docentes disponibles.



6 Revista digital Matemática, Educación e Internet (https://revistas.tec.ac.cr/index.php/matematica). Vol 26, No 2. Marzo, 2026 − Agosto, 2026

Ejemplo 4

1: Docente Carlos, 2: Docente Alberto y 3: Docente José.

6. A = {1, 2, . . . , a}: conjunto de aulas de la institución. Es posible definir subconjuntos especı́ficos,
como laboratorios (Alab ⊂ A).

Ejemplo 5

1: Aula 218, 2: Aula 219, 3: Aula 220 y 4: Laboratorio 1.

7. B = {1, 2, . . . , b}: conjunto de bloques horarios. Cada bloque representa un intervalo de tiempo
disponible para asignar un curso. En este trabajo se considerarán bloques horarios de tres horas;
no obstante, de acuerdo con la programación de la institución, también es posible definir bloques
horarios de una hora, dos horas, u otras duraciones.

Ejemplo 6

1: Lunes 7:00 a. m a 9:00 a.m, 2: Lunes 9:00 a. m a 12:00 m.d y 17: Viernes 7:00 a. m a 9:00 a.m.

Con la definición de los conjuntos fundamentales se ha establecido el marco estructural del problema.
El siguiente paso consiste en introducir los parámetros y variables de decisión, los cuales permiten
cuantificar la información relevante y expresar las posibles asignaciones de forma matemática. Es-
ta transición es clave para avanzar hacia la formulación de las restricciones y, posteriormente, de la
función objetivo.

3.2. Definición de parámetros y variable de decisión

Al igual que los conjuntos, los parámetros y variables constituyen un paso muy importante en la
modelación del problema de programación horaria, ya que permite organizar y garantizar su correc-
ta formulación. Los parámetros representan valores fijos que describen las condiciones del sistema,
como la capacidad de las aulas, la disponibilidad de los docentes o la carga académica asociada a
cada evento. Por otro lado, las variables son elementos dinámicos que determinan la asignación de
recursos, indicando, por ejemplo, si un curso es programado en un determinado horario o asignado
a un docente especı́fico. En esta sección se presentan algunos parámetros y un ejemplo de variable de
decisión que se pueden emplear en la formulación de un problema de calendarización horaria.

A continuación, se presentan algunos parámetros que pueden considerarse en la formulación de un
problema de programación horaria. La lista no pretende ser exhaustiva, sino ilustrativa, y tiene como
objetivo mostrar ejemplos de cómo se pueden cuantificar distintos aspectos del problema.

1. Cij representa la carga académica asociada al evento eij ∈ E.

2. CRmp yCRMp indican la carga académica mı́nima ymáxima que pueden asignarse al profesor
p ∈ P , respectivamente.

3. CRap corresponde a la carga académica asignada al profesor p ∈ P por el algoritmo.

4. Cma y CMa indican la cantidad mı́nima y máxima de estudiantes permitidos en el aula a ∈ A,
respectivamente.
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5. CCj representa el total estimado de estudiantes que se matricularán en el curso Cj ∈ C

6. CEij corresponde a la cantidad de estudiantes asignados al evento eij ∈ E por el algoritmo.
7. Tp denota el lı́mite de distancia o tiempo máximo de traslado permitido para el docente p ∈ P

entre aulas.
8. drk puede representa la distancia ó el tiempo de traslado entre al aula ar y el aula ak.
9. wi son pesos (coeficientes numéricos) que sirven para asignar importancia relativa a cada crite-

rio dentro del modelo, con i ∈ N. Estos valores pueden normalizarse, por ejemplo, imponiendo∑
i∈N

wi = 1.

Ejemplo: en un problema de horarios donde se desea minimizar tanto los conflictos de horarios
(f1) como los tiempos de traslado (f2), la función objetivo podrı́a expresarse como:

mı́nZ = w1f1 + w2f2.

Si se eligen w1 = 0.7 y w2 = 0.3, el modelo prioriza la reducción de conflictos por encima de los
traslados. En cambio, si se asignan w1 = 0.3 y w2 = 0.7, la prioridad se invierte. De esta forma,
los pesos permiten reflejar las preferencias o polı́ticas de la institución al momento de generar
los horarios.

A modo de ejemplo, se propone la siguiente variable de decisión, la cual permite representar la asig-
nación de eventos a docentes, aulas y bloques horarios:

xeij ,p,a,b =

{
1 si el evento eij está asignado al docente p ∈ P en el aula a ∈ A durante el bloque b ∈ B
0 en otro caso

3.3. Restricciones en la programación horaria

Uno de los objetivos en la elaboración de un horario académico es asignar a cada evento un docen-
te y un aula disponible, asegurando que la asignación cumpla con los requisitos establecidos por la
institución. Para lograrlo, es necesario definir y gestionar un conjunto de restricciones que regulen
la validez y calidad del horario generado. Estas restricciones se dividen en dos categorı́as: restriccio-
nes estrictas (hard constraints), que deben cumplirse obligatoriamente, y restricciones flexibles (soft
constraints), cuya violación es posible pero conlleva penalizaciones en la calidad de la solución. A
continuación, se ilustran algunos ejemplos de restricciones estrictas y flexibles aplicadas al problema
de programación horaria.

Restricciones estrictas:

1. Un docente p ∈ P no puede impartir más de un evento en un mismo bloque b ∈ B.
2. En cada aula a ∈ A y bloque horarios b ∈ B solo puede programarse un evento.
3. Se debe respetar toda preasignación establecida.
4. Un evento con duración menor o igual a tres horas (E3 ⊆ E) debe programarse en un solo

bloque.
5. Un evento de cuatro horas o más (E4 ⊆ E) puede programarse en dos o tres bloques horarios

consecutivos.
6. La carga académica asignada a un docente p ∈ P debe estar comprendida entre los valores

mı́nimo (CRmp) y máximo (CRMp) permitidos.
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7. La partición de los estudiantes que se asignarán a los eventos de un mismo curso Cj deberá
corresponder al total estimado de estudiantes que se matricularán en dicho curso.

8. La capacidad del aula a ∈ A debe ser suficiente para el evento asignado.

Restricciones flexibles:

9. Los eventos de un curso Cj no deben coincidir en el mismo bloque horario.

10. Si un docente imparte clases en bloques consecutivos, las aulas asignadas deberán estar cercanas
entre sı́ para y disminuir tiempos de traslado.

11. La carga académica de un docente debe programarse en bloques horarios consecutivos cuando
sea posible.

En términos generales, la clasificación entre restricciones estrictas y flexibles depende en granmedida
de las polı́ticas y necesidades de cada institución, demodo que una condición considerada preferencia
en un contexto puede transformarse en requisito obligatorio en otro. Sin embargo, toda programación
horaria debe cumplir con un conjunto de condiciones mı́nimas, tales como asegurar que un docente
no esté asignado a más de un evento en el mismo bloque horario, y que un aula no este asignada
simultáneamente por dos eventos distintos.

3.4. Formulación matemática de las restricciones

En esta sección se muestra cómo las restricciones presentadas en la sección (3.3) pueden expresarse
mediante sumatorias y notación matemática, utilizando los parámetros y conjuntos definidos previa-
mente. Este paso resulta fundamental, ya que permite formular el problema de manera estructurada
y posibilita su resolución a través de algoritmos de optimización.

Restricciones estrictas:

1. Un docente p ∈ P no puede impartir más de un evento en un mismo bloque b ∈ B.∑
eij∈E

∑
a∈A

xeij ,p,a,b ≤ 1, ∀p ∈ P, b ∈ B. (1)

Explicación:
La sumatoria recorre todos los cursos j, sus respectivos eventos i y los salones a ∈ A, conta-
bilizando cuántos eventos han sido asignados simultáneamente al docente p ∈ P en el bloque
b ∈ B.

Si la sumatoria es 0, significa que el docente p no tiene asignado ningún evento en ese
bloque.
Si la sumatoria es 1, significa que el docente p imparte exactamente un evento en ese bloque,
lo cual es factible.
Si la sumatoria es mayor que 1, significa que el docente p fue asignado a dos o más eventos
en el mismo bloque, lo cual viola la restricción y hace inviable la solución.

2. En cada aula a ∈ A y bloque b ∈ B solo puede programarse un evento.∑
eij∈E

∑
p∈P

xeij ,p,a,b ≤ 1, ∀a ∈ A, b ∈ B. (2)
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Explicación:
La sumatoria recorre todos los cursos j, sus respectivos eventos i y los docentes p ∈ P , contabili-
zando cuántos eventos han sido asignados simultáneamente en el aula a ∈ A durante el bloque
b ∈ B.

Si la sumatoria es 0, significa que en el aula a no se programó ningún evento en el bloque
b.
Si la sumatoria es 1, significa que exactamente un evento fue programado en el aula a
durante el bloque b, lo cual es factible.
Si la sumatoria es mayor que 1, significa que dos o más eventos fueron programados en el
mismo aula a en el bloque b, lo cual viola la restricción y hace inviable la solución.

3. Se debe respetar toda preasignación establecida.∑
a∈A

∑
b∈B

xeij ,p,a,b = 1, ∀eij ∈ Epre, ∀p ∈ P preasignado al evento eij .

Explicación:
La sumatoria recorre todas las aulas a ∈ A y los bloques b ∈ B, contabilizando las posibles
asignaciones de un evento eij ∈ Epre que ya tiene un docente p ∈ P preasignado.

Si la sumatoria es 0, significarı́a que el evento preasignado no fue ubicado en ningún aula
ni bloque, lo cual viola la restricción.
Si la sumatoria es 1, significa que el evento eij fue asignado exactamente al docente y bloque
definidos por la preasignación, cumpliendo con la condición requerida.
Si la sumatoria es mayor que 1, implicarı́a que el mismo evento fue asignado en más de un
aula o bloque, lo cual contradice la unicidad de la preasignación y hace inviable la solución.

4. Un evento con duración menor o igual a tres horas (E3 ⊆ E) debe programarse en un solo
bloque.∑

p∈P

∑
a∈A

∑
b∈B

xeij ,p,a,b ≤ 1, ∀eij ∈ E3. (3)

Explicación:
La sumatoria recorre todos los docentes p ∈ P , las aulas a ∈ A y los bloques b ∈ B, contabili-
zando cuántas veces un evento eij ∈ E3 ha sido asignado.

Si la sumatoria es 1, significa que el evento eij fue programado en un único bloque, cum-
pliendo con la condición de duración.
Si la sumatoria es mayor que 1, significa que el mismo evento fue asignado en dos o más
bloques, lo cual no es permitido ya que su duración cabe en un solo bloque.

De manera análoga, un evento de cuatro horas o más (E4 ⊆ E) puede programarse en dos o
tres bloques horarios consecutivos.∑

p∈P

∑
a∈A

∑
b∈B

xeij ,p,a,b ≤ 3, ∀eij ∈ E4.

5. La carga académica asignada a un docente p ∈ P debe estar comprendida entre los valores
mı́nimo (CRmp) y máximo (CRMp) permitidos.

CRmp ≤
∑
eij∈E

∑
a∈A

∑
b∈B

Cij · xeij ,p,a,b ≤ CRMp, ∀p ∈ P. (4)
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Explicación:

La sumatoria recorre todos los cursos j, sus eventos i, las aulas a ∈ A y los bloques b ∈ B,
acumulando la carga académica Cij correspondiente a los eventos asignados al docente p ∈ P .

Si la carga académica asignada está entre CRmp y CRMp, significa que la dedicación del
docente p está dentro del rango permitido, cumpliendo con la condición.
Si la carga académica asignada al docente p es menor que CRmp o mayor que CRMp,
significa que su dedicación está fuera del rango permitido, lo cual viola la restricción y
hace inviable la solución.

6. La partición de los estudiantes que se asignarán a los eventos de un mismo curso Cj deberá
corresponder al total estimado de estudiantes que se matricularán en dicho curso.

m∑
i=1

CEij = CCj , ∀Cj ∈ C. (5)

7. La capacidad del aula a ∈ A debe ser suficiente para el evento asignado.

Cma ≤ CEij · xeij ,p,a,b ≤ CMA, ∀eij ∈ E, a ∈ A, p ∈ P, b ∈ B. (6)

Restricciones flexibles:

8. Los eventos de un curso Cj no deben coincidir en el mismo bloque horario.
m∑
i=1

∑
p∈P

∑
a∈A

xeij ,p,a,b ≤ 1, ∀b ∈ B,Cj ∈ C. (7)

Explicación:
La sumatoria recorre todos los eventos i asociados al curso Cj ∈ C, verificando en qué aula
a ∈ A y con qué docente p ∈ P se asignan en un bloque b ∈ B. La restricción busca que, de
forma deseable, no se asignen dos o más eventos del mismo curso en un mismo bloque horario.

Si la sumatoria es menor o igual a 1, la condición se cumple y no se aplica penalización.
Si la sumatoria es mayor que 1, significa que dos o más eventos del curso Cj coinciden en
el mismo bloque. En este caso, la solución sigue siendo factible, pero se aplica una penali-
zación en la función objetivo, reduciendo la calidad del horario generado.

9. Si un docente imparte clases en bloques consecutivos, las aulas asignadas deberán estar cercanas
entre sı́ para y disminuir tiempos de traslado.

drk
[
xeij ,p,ar,b + xeij ,p,ak,(b+1)

]
≤ 2Tp, ∀p ∈ P, b ∈ B, ar ̸= ak. (8)

Explicación:
La desigualdad considera que si un docente p ∈ P imparte clases en dos bloques consecutivos
b y b+ 1, los salones ar y ak asignados deben estar cercanos entre sı́.

Si las aulas asignadas están suficientemente cerca, es decir, drk no supera el lı́mite estable-
cido, la condición se cumple y no se aplica penalización.
Si las aulas asignadas están demasiado alejadas, la condición se incumple. En este caso, la
solución sigue siendo factible, pero se aplica una penalización en la función objetivo, ya
que el docente tendrı́a dificultades para trasladarse entre clases consecutivas.
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10. La carga académica de un docente debe programarse en bloques horarios consecutivos cuando
sea posible.
Considere la variable binaria ypb = 1 si el docente imparte clase en el bloque b y ypb = 0 en otro
caso. ∑

b∈B\{bt−1}

|ypb − yp(b+1)| ≤ τp, ∀p ∈ P, (9)

donde τp denota el lı́mite máximo de espacios libres permitidos entre bloques consecutivos de
cada docente p ∈ P .
Explicación:
La sumatoria contabiliza los cambios de estado entre bloques consecutivos del docente p, es
decir, las transiciones entre impartir clase y no impartir clase.

Si la suma de transiciones no supera el valor máximo τp, significa que las clases del docente
p se han programado de manera compacta, favoreciendo bloques consecutivos y reducien-
do espacios libres.
Si la suma excede τp, se interpreta que el docente tiene un horario con demasiados espacios
libres.

En resumen, las restricciones estrictas (1-6) delimitan el espacio de soluciones factibles (7-9),mientras
que las restricciones flexibles orientan al modelo hacia soluciones de mayor calidad.

3.5. Ejemplo ilustrativo de verificación de restricciones

Con el fin de mostrar de manera práctica cómo se aplican las restricciones en un problema de pro-
gramación horaria, a continuación se desarrolla un ejemplo ilustrativo. El objetivo no es formular un
caso real completo, sino ilustrar cómo una asignación puede verificarse paso a paso para determinar
si cumple con las restricciones estrictas y flexibles definidas previamente. Se presentará primero una
asignación que resulta factible y, posteriormente, un caso en el que la restricción (6) falla, lo que obliga
a realizar un ajuste en la asignación.

Definición de conjuntos:
Supongamos que E4 = Epre = ∅ y E3 = E

C = {C1, C3}, E = {e11, e21, e13, e23}, P = {1, 2}, A = {1, 2, 3}, B = {1, 2}.

CCj representa el total estimado de estudiantes que se matricularán en el curso Cj ∈ C

CEij corresponde a la cantidad de estudiantes asignados al evento eij ∈ E por el algoritmo.

Parámetros y variable de decisión:
Estimación del total de estudiantes que se matricularán y partición de eventos de acuerdo con
el número previsto de estudiantes:

CC1 = 120, (CE11 = 90, CE21 = 30); CC3 = 60, (CE13 = 30, CE23 = 30).

Carga académica por evento: C11 = 6, C21 = 2, C13 = 2, C23 = 2.
Lı́mites de carga académica por docente: CRmp = 2, CRMp = 8, para 1, 2.

Capacidades de aulas:
(Cm1, CM1) = (20, 100), (Cm2, CM2) = (20, 40), (Cm3, CM3) = (20, 40).
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Variable de decisión:

xeij ,p,a,b =

{
1 si el evento eij está asignado al docente p ∈ P en el aula a ∈ A durante el bloque b ∈ B
0 en otro caso

Ejemplo de asignación de horaria (todas las demás xeij ,p,a,b = 0).
xe11,1,1,1 = 1, xe13,1,2,2 = 1, xe21,2,2,1 = 1, xe23,2,1,2 = 1.

A continuación, se verifica que la asignación propuesta satisface las restricciones definidas en
la sección anterior.
Restricción de exclusividad de docente por bloque, dada en (1).

(1, 1) : xe11,1,1,1 + 0 + xe11,1,2,1 + . . .+ 0 = xe11,1,1,1 + 0 + . . .+ 0 = 1 ≤ 1

(1, 2) : xe13,1,2,2 + 0 + xe11112 + . . .+ 0 = 1 ≤ 1

(2, 1) : xe21,2,2,1 + 0 + xe23211 + . . .+ 0 = 1 ≤ 1

(2, 2) : xe23,2,1,2 + 0 + xe21,2,2,2 + . . .+ 0 = 1 ≤ 1

Restricción de exclusividad de aula por bloque, dada en (2).
(1, 1) : xe11,1,1,1 + 0 + xe21,2,1,1 + . . .+ 0 = 1 ≤ 1

(2, 1) : xe21,2,2,1 + 0 + xe11,1,2,1 + . . .+ 0 = 1 ≤ 1

(1, 2) : xe23,2,1,2 + 0 + xe13,1,1,2 + . . .+ 0 = 1 ≤ 1

(2, 2) : xe13,1,2,2 + 0 + xe23,2,2,2 + . . .+ 0 = 1 ≤ 1

Restricción de duración de eventos, dada en (3).
e11 : xe11,1,1,1 + 0 + xe11,1,2,1 + . . .+ 0 = 1 ≤ 1

e21 : xe21,2,2,1 + 0 + xe21,1,1,1 + . . .+ 0 = 1 ≤ 1

e13 : xe13,1,2,2 + 0 + xe13,1,1,1 + . . .+ 0 = 1 ≤ 1

e23 : xe23,2,1,2 + 0 + xe23,1,2,1 + . . .+ 0 = 1 ≤ 1

Restricción de carga académica por docente, dada en (4).
1 : C11 · xe11,1,1,1 + C13 · xe13,1,2,2 + . . .+ 0 = C11 · 1 + C13 · 1 + . . .+ 0 = 6 + 2 = 8

2 : C21 · xe21,2,2,1 + C23 · xe23,2,1,2 + . . .+ 0 = C21 · 1 + C23 · 1 + . . .+ 0 = 2 + 2 = 4

Restricción de partición de estudiantes, dada en (5).
C1 : CE11 + CE21 = 90 + 30 = 120 = CC1

C3 : CE13 + CE23 = 30 + 30 = 60 = CC3

Restricción de capacidad de aula, dada en (6).
(e11→1) : 20 ≤ CE11 · xe11,1,1,1 = 90 · 1 = 90 ≤ 100

(e21→2) : 20 ≤ CE21 · xe21,2,2,1 = 30 · 1 = 30 ≤ 40

(e13→2) : 20 ≤ CE13 · xe13,1,2,1 = 30 · 1 = 30 ≤ 40

(e23→1) : 20 ≤ CE23 · xe23,2,1,1 = 30 · 1 = 30 ≤ 100

Con el fin de contrastar el ejemplo factible anterior, se presentan a continuación tres escenarios de
incumplimiento de restricciones: uno asociado a una restricción estricta y dos vinculados con restric-
ciones flexibles. Estos casos permiten ilustrar cómo, en el primer caso, la solución se vuelve inviable,
mientras que en los dos restantes la solución sigue siendo factible aunque con una penalización en la
función objetivo.
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Incumplimiento de restricción estricta, dada en (6).
Si (contrariamente a la asignación factible) se asigna e11 conCE11 = 90 al aula 2 (cuya capacidad
máxima es CM2 = 40), entonces

Cm2 ≤ CE11 · xe11,1,2,1 ≤ CM2 ⇒ 20 ≤ 90 · 1 ≤ 40 ⇒ 20 ≤ 90 ≤ 40,

lo que es falso porque 90 > 40. Por tanto, la solución es no es factible.

Incumplimiento de restricción flexible, dada en (7).
Si se prefiere evitar que los eventos de un curso coincidan en unmismo bloque, con la asignación
original los dos eventos de C1 quedaron en 1

m∑
i=1

2∑
p=1

3∑
a=1

xeij ,p,a,1 = xe11,1,1,1 + xe21,2,2,1 + 0 + . . .+ 0 = 2 > 1.

m∑
i=1

2∑
p=1

3∑
a=1

xeij ,p,a,1 = xe11112 + xe21,2,2,2 + 0 + . . .+ 0 = 2 > 1.

Incumplimiento de restricción flexible, dada en (8).
Si se modela como preferencia que un docente no cambie de aula entre bloques consecutivos,
puede penalizarse:

d12
[
xe11,1,1,1 + xe13,1,2,2

]
≤ 2T1.

Por ejemplo, si d12 = 30 y T1 = 20, entonces

30 (1 + 1) = 60 > 40 = 2T1,

Este incumplimiento de las restricciones flexibles, no afecta la factibilidad del modelo, pero se incor-
pora como penalización en la función objetivo.

4. Funciones objetivo

En la programación horaria, la elección de la función objetivo desempeña un papel fundamental en la
calidad de la solución obtenida. Dependiendo de los objetivos institucionales y operativos, la función
objetivo puede priorizar diferentes criterios, como la asignación equitativa de la carga docente, la
minimización de espacios libres en los horarios de los docentes, la optimización del uso de las aulas,
o la reducción de traslados entre aulas o sedes. Definir una función objetivo adecuada permite dirigir
el modelo hacia soluciones que no solo sean factibles, sino también eficientes y alineadas con las
necesidades de la institución.

En esta sección, se presentan ejemplos de funciones objetivo que buscan minimizar costos operati-
vos, equilibrar la distribución de carga académica, reducir conflictos de asignación y maximizar la
satisfacción de docentes o estudiantes. Cada una de estas funciones responde a distintos enfoques de
optimización, lo que permite adaptar el modelo a los requerimientos especı́ficos de cada institución.
Los siguientes ejemplos ilustran distintas funciones objetivo utilizadas en la programación horaria:

1. Minimizar el número de cambios de aula para los docentes:

mı́n
∑
p∈P

∑
b∈B

∑
ar,ak∈A,s̸=s′

drk · xeij ,p,ar,b · xeij ,p,ak,(b+1).
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Restricción Asociada:∑
ar,ak∈A,ar ̸=ak

drk · xeij ,p,ar,b · xeij ,p,ak,(b+1) ≤ Tp, ∀p ∈ P.

Esta función objetivo busca minimizar la cantidad de cambios de aula que experimentan los
docentes en su jornada. Cuandoundocente debe trasladarse entre aulas distantes, se incrementa
el tiempo de desplazamiento, lo que puede afectar la eficiencia de la enseñanza y la comodidad
del docente.

2. Minimizar el uso de aulas para optimizar el espacio:

mı́n
∑
a∈A

∑
b∈B

zab,

donde zab es una variable binaria que indica si el aula a ∈ A ha sido utilizado en al menos un
bloque horario b ∈ B.
Restricción Asociada:

zab ≥ xeij ,p,a,b, ∀eij ∈ E, p ∈ P, a ∈ A, b ∈ B.

Esta función objetivo busca minimizar la cantidad de aulas utilizados en la programación hora-
ria con el fin de optimizar el uso del espacio disponible. Reducir la cantidad de aulas utilizados
ayuda a mejorar la logı́stica de asignación de aulas, reducir costos operativos y evitar la disper-
sión innecesaria de los cursos.

3. Minimizar los intervalos libres en la jornada de los docentes:

mı́n
∑
p∈P

∑
b∈B\{bt−1}

|ypb − yp(b+1)|,

donde ypb = 1 si el docente imparte clase en el bloque b y ypb = 0 en otro caso.
Restricción Asociada:∑

b∈B\{bt−1}

|ypb − yp(b+1)| ≤ τp

Esta función objetivo busca minimizar la cantidad de intervalos libres en el horario de los do-
centes. Reducir estas interrupciones mejora la eficiencia del horario, optimiza el uso del tiempo
de los docentes y reduce tiempos libres en su jornada.

4. Maximizar la preferencias de los docentes:

máx

PrefP − w3

∑
j∈C

∑
b∈B

ujb

 , (10)

donde

PrefP =
∑
eij∈E

∑
p∈P

∑
a∈A

∑
b∈B

(w1Pre cursop,j + w2Pre bloquep,b)xeij ,p,a,b,

y la variable auxiliar ujb ≥ 0 se define como:

ujb ≥ Sjb − 1, con Sjb =

m∑
i=1

∑
p∈P

∑
a∈A

xeij ,p,a,b, ∀Cj ∈ C, b ∈ B.

Aquı́:
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Pre cursop,j : indica la preferencia del docente p ∈ P por impartir el curso Cj . Su valor está
normalizado en el intervalo [0, 1], donde 0 significa que el docente no desea impartir dicho
curso y 1 representa la máxima preferencia.
Pre bloquep,b: indica la preferencia del docente p ∈ P por impartir clases en el bloque b ∈ B.
Este parámetro también toma valores en el rango [0, 1]. Un valor cercano a 1 indica una alta
disponibilidad del docente por impartir clases en ese bloque horario, mientras que valores
cercanos a 0 reflejan baja disponibilidad.
w1, w2, w3 > 0: son pesos que permiten ajustar la importancia relativa entre preferencias y
penalizaciones. Estos pesos permiten ajustar el modelo según las prioridades de la institu-
ción.
ujb: mide el exceso de eventos del curso Cj ∈ C en el bloque b ∈ B por encima del primero
permitido.
a) Si Sjb ≤ 1, entonces ujb = 0 (no hay exceso).
b) Si Sjb > 1, entonces ujb mide cuántos eventos adicionales se programaron simultánea-

mente en ese bloque.

La función objetivo maximiza la preferencia de los docentes respecto a los cursos y bloques y es
penalizada cada vez que exista un evento superpuesto del mismo curso, es decir, el objetivo es
encontrar un equilibrio entre maximizar la satisfacción de los docentes y minimizar los eventos
superpuestos.

4.1. Ejemplos ilustrativos en la evaluación de la función objetivo

En esta sección se analizan tres casos a manera de ejemplos: caso 1, alta preferencia docente y penali-
zación media; caso 2, baja preferencia docente y penalización alta; y caso 3, mejora por reasignación
de un evento. Asimismo, se destaca cómo los pesos y las superposiciones influyen en el valor final de
la función objetivo.

Para ilustrar estos escenarios, en las siguientes subsecciones se emplean las asignaciones definidas en
el Ejemplo 3.5 y la función objetivo presentada en la Ecuación 10. La Tabla 1 resume la información
relativa a las asignaciones y a las preferencias de los docentes respecto de un curso especı́fico y un
bloque horario.

Docente Evento Pre cursop,j Pre bloquep,b Carga Cij Bloque asignado
1 e11 1.00 1.00 6 1
2 e21 0.70 0.80 2 1
1 e13 0.80 0.90 2 2
2 e23 1.00 1.00 2 2

Tabla 1: Asignación horaria y preferencia de docentes

4.1.1. Caso 1: alta preferencia docente y penalización media

En este ejemplo se asignan los pesos w1 = w2 = 1 y w3 = 0.5. Dichos valores evidencian que la
institución da la máxima importancia a las preferencias docentes, tanto en la asignación de cursos
como en la de bloques horarios, mientras que otorga una importancia moderada a la reducción de
superposiciones entre los curso Cj .
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Cálculo de PrefP .

PrefP2 = (Pre curso1,1 + Pre bloque1,1)xe11,1,1,1 + (Pre curso2,1 + Pre bloque2,2)xe21,2,2,2

+ (Pre curso1,3 + Pre bloque1,2)xe13,1,2,2 + (Pre curso2,3 + Pre bloque2,2)xe2,3,2,1,2

= (1 + 1) · 1 + (0.7 + 0.8) · 1 + (0.8 + 0.9) · 1 + (1 + 1) · 1
= 7.2

Cálculo de ujb.

S1,1 =

2∑
i=1

2∑
p=1

3∑
a=1

xei1,p,s1 = 2 ⇒ u1,1 = 1, S3,2 =

2∑
i=1

2∑
p=1

3∑
a=1

xei3,p,s,2 = 2 ⇒ u3,2 = 1

Entonces
2∑

j=1

2∑
b=1

ujb = 2 ⇒ w3

2∑
j=1

2∑
b=1

ujb = 0.5 · 2 = 1

Cálculo del valor de la función objetivo 10.

máx(7.2− 1) = 6.2

El valor de la función objetivo evidencia un aprovechamiento significativo de las preferencias docen-
tes; sin embargo, persiste un costo asociado a la superposición de eventos que disminuye levemente
el resultado final. Este ejemplo ilustra cómo el proceso de planificación prioriza la satisfacción del
docenteado, aun tolerando ciertos choques horarios.

4.1.2. Caso 2: baja preferencia docente y penalización alta

En este ejemplo se asignan los pesos w1 = w2 = 0.3 y w3 = 0.9. Dichos valores evidencian que la
institución concede una importancia relativamente baja a las preferencias de los docentes, tanto en lo
referente a la asignación de cursos como a los bloques horarios, mientras que otorga una relevancia
mayor a la reducción de superposiciones entre los cursos Cj .

Cálculo de PrefP

PrefP = (0.3 · 1 + 0.3 · 0.8) + (0.3 · 0.7 + 0.3 · 1)
+ (0.3 · 0.8 + 0.3 · 0.9) + (0.3 · 1 + 0.3 · 1)

= 2.16

Cálculo de ujb

Con w3 = 0.9, se obtiene
2∑

j=1

2∑
b=1

ujb = 2 ⇒ w3

2∑
j=1

2∑
b=1

ujb = 0.9 · 2 = 1.8

Cálculo del valor de la función objetivo 10

máx(2.16− 1.8) = 0.36

En contraste con lo observado en el Ejemplo 4.1.1, a reducción de los pesos asignados a las preferencias
y el incremento del peso de la penalización conducen a una disminución considerable en el valor de la
función objetivo. Este resultado evidencia un escenario extremo, en el que las asignaciones se tornan
poco favorables, dado que el modelo otorga mayor prioridad a la eliminación de superposiciones.

https://revistas.tec.ac.cr/index.php/matematica


Conclusiones 17

4.1.3. Caso 3: mejora por reasignación de un evento

En el Ejemplo 4.1.1, se modifica la asignación del evento e21 al bloque 2 y al aula 3, mientras que los
demás eventos se mantienen sin cambios.

Al realizar este cambio, la variable de exceso ujb modifica su valor.

S1,1 = 1, S1,2 = 1 ⇒ u1,1 = u1,2 = 0, S3,2 = 2 ⇒ u3,2 = 1,

Entonces
2∑

j=1

2∑
b=1

ujb = 1 ⇒ w3

2∑
j=1

2∑
b=1

ujb = 0.5 · 1 = 0.5.

Cálculo del valor de la función objetivo 10

máx(7.4− 0.5) = 6.9.

En contraste con lo observado en el Ejemplo 4.1.1, al mantener los pesos correspondientes al caso de
preferencia alta y penalización media, pero reubicar el evento e21 en el bloque 2, la superposición
disminuye de dos a uno. Ası́, la reducción de conflictos genera una mejora inmediata en el valor de
la función objetivo.

En conclusión, los ejemplos desarrollados permiten ilustrar de manera didáctica cómo la programa-
ción de horarios puede modelarse mediante funciones objetivo que combinan preferencias y pena-
lizaciones. Más allá de los detalles técnicos, el análisis muestra que el equilibrio entre los criterios
considerados y pequeños ajustes en las asignaciones pueden mejorar significativamente los resulta-
dos.

5. Conclusiones

Este artı́culo ha presentadoun enfoque introductorio a la programación horaria educativa, destacando
la importancia de la definición de conjuntos, parámetros, restricciones y funciones objetivo. Se han
ilustrado diferentes criterios de optimización y su impacto en la calidad de los horarios generados.

La formulación matemática presentada permite que los problemas de asignación de horarios puedan
ser modelados demanera estructurada, facilitando su solución mediante algoritmos de optimización.
Además, los ejemplos ilustrativos proporcionan una base comprensible para que nuevos investigado-
res y profesionales puedan familiarizarse con los conceptos clave en este campo.

Finalmente, este trabajo puede constituir unpunto departida para una implementación básica.Además,
la aplicación de un modelo de programación horaria contribuye de manera sustancial a mejorar la
equidad en la asignación de recursos y la satisfacción de docentes y estudiantes, de acuerdo con los
criterios de relevancia establecidos por la institución.
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tituciones educativas utilizando la técnica metaheurı́stica, búsqueda tabú. Revista Avances en
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