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Fernando Baltazar Larios2

fernandobaltazar@ciencias.unam.mx
Universidad Nacional Autónoma de México
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Resumen: En este artı́culo se considera la relación entre las distribuciones tipo fase y sistemas positi-
vos a través de ejemplos prácticos y aplicaciones. Las distribuciones tipo fase, comúnmente utilizadas
en la modelación de sistemas dinámicos, representan la evolución temporal de un conjunto de varia-
bles en función de su fase. Por otro lado, los sistemas positivos, que prevalecen en una amplia gama
de disciplinas, son aquellos en los que las variables involucradas mantienen valores no negativos a
lo largo del tiempo. A través de aplicaciones como la dinámica de la trayectoria de estudiantes y la
gestión de la cadena de suministro, se muestra cómo las distribuciones tipo fase pueden ser útiles
para describir y analizar sistemas positivos, ofreciendo una perspectiva sobre su comportamiento
dinámico. El principal objetivo de este trabajo es establecer conexiones claras entre estos conceptos
aparentemente diferentes, destacando su relevancia y utilidad en diversos campos de estudio. Los
resultados aquı́ presentados contribuyen a una mejor comprensión de la interacción entre la teorı́a
de las distribuciones tipo fase y la teorı́a de sistemas positivos, abriendo nuevas oportunidades para
futuras investigaciones en este campo interdisciplinario.

Palabras Clave: Distribución tipo fase, sistemas positivos, sistemas de control.

Abstract: In this paper, we consider the relationship between phase-type distributions and positi-
ve systems through practical examples and applications. Phase-type distributions, commonly used
in modelling dynamic systems, represent the temporal evolution of a set of variables based on their
phase. On the other hand, positive systems, prevalent in a wide range of disciplines, are those where
the involved variables maintain non-negative values over time. Through applications such as student
trajectory dynamics and supply chain management, it is shown how phase-type distributions can be
useful for describing and analyzing positive systems, offering insight into their dynamic behavior.
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Ourmain objective is to establish clear connections between these seemingly different concepts, high-
lighting their relevance and utility in various fields of study. The findings presented here contribute to
a better understanding of the interaction between phase-type distribution theory and positive system
theory, opening new opportunities for future research in this exciting interdisciplinary field.

Keywords: Phase-type distribution, positive systems, control systems.

Resumo: Neste artigo, considera-se a relação entre distribuições do tipo fase e sistemas positivos
por meio de exemplos práticos e aplicações. As distribuições do tipo fase, comumente utilizadas na
modelagem de sistemas dinâmicos, representam a evolução temporal de um conjunto de variáveis
em função de sua fase. Por outro lado, os sistemas positivos, que prevalecem em uma ampla gama
de disciplinas, são aqueles nos quais as variáveis envolvidas mantêm valores não negativos ao longo
do tempo. Através de aplicações como a dinâmica da trajetória de estudantes e a gestão da cadeia
de suprimentos, mostra-se como as distribuições do tipo fase podem ser úteis para descrever e anali-
sar sistemas positivos, oferecendo uma perspectiva sobre seu comportamento dinâmico. O principal
objetivo deste trabalho é estabelecer conexões claras entre esses conceitos aparentemente diferentes,
destacando sua relevância e utilidade em diversos campos de estudo. Os resultados aqui apresenta-
dos contribuem para uma melhor compreensão da interação entre a teoria das distribuições do tipo
fase e a teoria de sistemas positivos, abrindo novas oportunidades para futuras pesquisas neste campo
interdisciplinar.

Palavras-chave: Distribuição do tipo fase, sistemas positivos, sistemas de controle.

1. Introducción

Las representaciones positivas aparecen de forma natural en la modelación de diversos sistemas fı́si-
cos, económicos y ecológicos (Farina & Rinaldi, 2000; Luenberger, 1979). Desde hace tiempo, ha exis-
tido un esfuerzo por unir a las comunidades de teorı́a de control y teorı́a de la probabilidad, ya que
ambos campos han desarrollado sus propias teorı́as a partir de una raı́z común: la teorı́a de Perron-
Frobenius (Horn & Johnson, 2012; Seneta, 2006). En particular, la referencia Commault y Mocanu
(2003) proporcionó un puente entre estas comunidades mediante el uso de distribuciones de tipo
fase.

Las distribuciones tipo fase (PH por sus siglas en inglés Phase-type) representan el tiempo hasta la
absorción en una cadena de Markov absorbente (Neuts, 1975, 1981b). Ası́ pues, son usadas gene-
ralmente para modelar varios tiempos aleatorios, en particular, aquellos que aparecen en sistemas
de manufactura, como tiempos de procesamiento, tiempos de falla, tiempos de reparación, etc. La
propiedad Markoviana de estas distribuciones facilita el uso de métodos computacionales eficientes
basados en matrices para evaluar su desempeño (Bladt & Nielsen, 2017).

Las distribuciones PH son una clase de distribución de probabilidad que sonmuy usadas en la mode-
lación estocástica para representar fenómenos aleatorios a tiempo continuo —denotado por CPH—
o a tiempo discreto —denotado por DPH— (Buchholz et al., 2014; Fackrell, 2009). Estas distribucio-
nes están caracterizadas por su representación PH (Horváth y Telek, 2009; O’Cinneide, 1989), que
describe la evolución de un proceso estocástico en términos de transiciones entre diferentes fases.

Como se destacó en la referencia Kim (2015), existe una conexión entre realizaciones positivas y una
representación PHya sea a tiempo continuo o a tiempodiscreto. En las distribuciones PH, las variables
aleatorias representan el tiempo hasta que cierto evento ocurre, por ejemplo, el tiempo que pasa hasta
que el sistema falla o el tiempo hasta que un cliente llega a algún servicio. La distribución de cada
una de estas variables aleatorias está especificada por una función matriz-exponencial, que describe
la función de densidad o de distribución de probabilidad.
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Estudiar o convertir un sistema positivo en una distribución PH puede ser benéfico por varias razo-
nes. Por ejemplo, se podrı́a simplificar su complejidad y facilitar su análisis (Bladt & Nielsen, 2017);
además, las distribuciones PH son conocidas por tener propiedades matemáticas favorables que pue-
den hacer el análisis de sistemas dinámicos más manejables (Esparza, 2011); pueden proveer una
representación efectiva y compacta de la evolución temporal de un sistema positivo, permitiendomo-
delar y predecir el comportamiento del sistema en el tiempo, lo cual es crucial para planear y tomar
decisiones en varias aplicaciones. Además, representar el sistema en términos de distribuciones PH
puede ofrecer una interpretación intuitiva del comportamiento dinámico del sistema positivo, ayu-
dando a los investigadores a tener un mejor entendimiento de cómo las variables del sistema evo-
lucionan y se relacionan entre sı́. Inclusive, es posible aprovechar la gran cantidad de herramientas
tecnológicas disponibles para analizar distribuciones de probabilidad para evaluar el desempeño del
sistema en términos de métricas tales como fiabilidad, disponibilidad y eficiencia.

Si bien el estudio de convertir sistemas positivos en distribuciones PH se ha abordado en algunos
artı́culos (Commault & Mocanu, 2003; Kim, 2015), la literatura existente se mantiene limitada en al-
cance, dejando espacio significativo para más exploración e investigación. Es evidente que este tema
no ha recibido una atención generalizada entre los investigadores, por ello, es importante considerar
para más estudios de comprensión y un entendimiento más profundo de esta relación.

Dado el incremento en la relevancia de las distribuciones PH (Ahmad & Bladt, 2023; Hobolth et al.,
2024), aprovechar la existencia de algoritmos de estimación se vuelve cada vez más importante. Por
ejempo, utilizar algoritmos pre-programados disponibles en el paquete estadı́stico R para la estima-
ción de distribuciones PH tiene varias ventajas (Bladt et al., 2022; Rivas-González et al., 2022). En
primer lugar, R ofrece un amplio ecosistema de paquetes estadı́sticos diseñados para diversas tareas
de estimación, incluyendo la estimación de máxima verosimilitud (MLE) y la inferencia Bayesiana.
Al utilizar estos recursos, se puede agilizar el proceso de modelado y centrarse más en el análisis de
datos y su interpretación. Además, la naturaleza de código abierto de R fomenta la transparencia y la
reproducibilidad, asegurando que los procedimientos de estimación puedan ser fácilmente examina-
dos y replicados. Adicionalmente, la disponibilidad de documentación y comunidades de usuarios
facilita aúnmás la adopción e implementación de estos algoritmos. Por lo tanto, incorporar algoritmos
de estimación basados en R para distribuciones PH mejora la eficiencia, fiabilidad y accesibilidad de
los esfuerzos de modelado.

Ası́ pues, el objetivo principal de este trabajo es proporcionar ejemplos prácticos y simulados utilizan-
do el paqueteR para establecer conexiones claras entre las distribuciones PH y los sistemas positivos,
destacando su relevancia y utilidad en diversos campos de estudio.

La motivación principal de este trabajo radica en la necesidad de comprender y modelar sistemas
dinámicos en los que las variables deben mantenerse no negativas, como ocurre en contextos de ges-
tión de cadenas de suministro, población estudiantil o procesos de manufactura. Aunque las distri-
buciones PH se utilizan ampliamente para representar tiempos de espera y procesos estocásticos, su
aplicación explı́cita en la modelación de sistemas positivos no ha sido explorada de manera sistemáti-
ca. Este estudio busca llenar ese vacı́o, mostrando cómo las distribuciones PH pueden ofrecer una
representación precisa y flexible de la evolución temporal de variables positivas, facilitando el análi-
sis, la simulación y la predicción del comportamiento de sistemas reales en diversas disciplinas.

Este artı́culo está organizado de la siguiente manera. En la Sección 2, se muestran los principales
antecedentes sobre los sistemas lineales positivos y las distribuciones PH. La relación entre estos temas
se presenta en la Sección 3. Los ejemplos numéricos se muestran en la Sección 4, tanto para el tiempo
continuo como discreto. Comentarios finales se presentan en la Sección 5.
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2. Antecedentes

En esta sección se proporciona información sobre tres componentes esenciales para este trabajo: los
sistemas lineales positivos, las distribuciones CPH y las distribuciones DPH. Los sistemas lineales
positivos representan una clase de sistemas dinámicos caracterizados por estados y parámetros no
negativos, comúnmente encontrados en diversas aplicaciones en ingenierı́a y ciencia. Comprender su
comportamiento y propiedades sienta las bases para nuestra investigación. Posteriormente, las dis-
tribuciones CPH y las distribuciones DPH sirven como modelos probabilı́sticos capaces de describir
la evolución temporal de variables aleatorias a tiempo continuo y discreto, respectivamente. Ası́, se
pretende esclarecer cómo la naturaleza estocástica inherente a la dinámica de los sistemas puede ser
capturada y analizada de manera efectiva dentro del marco de las distribuciones PH.

2.1. Sistemas lineales positivos

Consideremos un sistema lineal invariante en el tiempo con entrada única y salida única de la siguien-
te forma

x(t+ 1) = Ax(t) +Bu(t)

y(t) = Cx(t)

x(0) = x0,

(1)

donde x(t) ∈ Rn, u(t) ∈ R, y(t) ∈ R, A ∈ Rn×n
+ , B ∈ Rn×1

+ y C ∈ R1×n
+ con n ∈ N. Dada la condición

inicial x(0) y la secuencia de entrada u(t) con t ∈ R+ para el caso continuo y t ∈ N para el caso discreto,
es posible predecir toda la secuencia de estados x(t) y salidas y(t), ∀t. El estado x(0) resume toda la
historia pasada del sistema. La dimensión n del estado x(t) ∈ Rn se denomina el orden del sistema.
La terna de matrices (A,B,C) denota una realización positiva.

Ası́, el sistema (1) se dice sistema lineal positivo si, para cualquier entrada no-negativa y estado ini-
cial no-negativo, la trayectoria de estados y la salida son siempre no-negativas (ver Farina y Rinaldi
(2000)). El problema de realización para sistemas positivos también ha sido considerado por Kaczo-
rek y Sajewski (2014) y Kim (2013).

2.2. Distribuciones PH a tiempo continuo

Sea {Xt : t ≥ 0} un proceso de saltos de Markov con espacio de estados E = {1, 2, . . . , n, n + 1}
donde los estados {1, 2, . . . , n} son transitorios y el estado {n+ 1} es un estado absorbente. Entonces
{Xt : t ≥ 0} tiene el generador infinitesimal de dimensión (n+ 1)× (n+ 1) dado por

Λ =

[
T t
0 0

]
,

donde T = (tij) es una matriz cuadrada de n × n, tal que tii < 0 y tij ≥ 0, i ̸= j; 0 ∈ Rn es el vector
renglón cuyas componentes son todas cero, y t = −T1, donde 1 es un vector de unos de dimensión
apropiada. Los elementos de t, denotados como ti, son las intensidades con las cuales el proceso salta
al estado absorbente y son conocidos como las tasas de salida.

Ahora, denotaremos las probabilidades iniciales de {Xt : t ≥ 0} como αi = P(X0 = i) para 0 ≤ i ≤ n,
ası́ α∗ = (α, αn+1) donde α = (α1, α2, . . . , αn). Es común que αn+1 = 1−

∑n
i=1 αi.

El tiempo hasta la absorción dado por

τ = ı́nf{t ≥ 0|Xt = n+ 1}
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2.3 Distribuciones PH a tiempo discreto 5

tiene distribución tipo fase continua (CPH) y escribimos τ ∼ CPHn(α, T ) donde el subı́ndice n se
refiere al número de estados transitorios, y algunas veces es omitido.

La función de densidad de probabilidad (pdf), función de distribución acumulada (cdf) y la trans-
formada de Laplace Stiltjes de τ , respectivamente, están definidas por

fτ (x) = αeTxt

Fτ (x) = 1− αeTx1 (2)
f∗(s) = α(sI − T )−1t.

La matriz de probabilidades de transición (tpm) al tiempo s de {Xt : t ≥ 0} se puede obtener a través
de la siguiente fórmula

P (s) = eΛs. (3)

2.3. Distribuciones PH a tiempo discreto

Las distribuciones tipo fase discretas (DPH, por sus siglas en inglésDiscrete Phase-type) son una clase
de distribuciones de probabilidad utilizadas para modelar el tiempo hasta la absorción en procesos
de Markov en tiempo discreto (Neuts, 1981a). Son ampliamente empleadas en diversos campos, in-
cluyendo la teorı́a de colas, el análisis de confiabilidad y la evaluación del rendimiento de sistemas
informáticos y de comunicación (Asmussen, 2003).

Una distribución DPH se caracteriza por su matriz de probabilidad de transición y un vector de pro-
babilidades iniciales. Sea T = (tij) la matriz de probabilidad de transición de dimensión n×n, donde
n es el número de fases en la distribución. La entrada tij representa la probabilidad de transitar de
la fase i a la fase j en un paso de tiempo. Además, sea α = (αi) el vector de probabilidades iniciales,
donde αi representa la probabilidad de empezar en la fase o estado i.

La probabilidad de transitar de la fase i a la fase j en k pasos de tiempo, denotada como
P(Xk = j|X0 = i), está dada por la entrada (i, j) de la matriz T k.

Las distribuciones DPH son versátiles y puedenmodelar diversos procesos estocásticos con diferentes
caracterı́sticas. Su flexibilidad las hace valiosas en el análisis y simulación de sistemas con dinámica
de eventos discretos (Asmussen et al., 1996; Bladt et al., 2011).

Consideremos una cadena de Markov absorbente finita {Yk}k≥0 con espacio de estados
E = {1, 2, . . . , n, n+ 1}, con tpm dada por

P =

[
T t
0 1

]
,

donde T = (Tij)n×n, t = (t1, t2, . . . , tn)n×1, tal que t = (I − T )1, y 0 = (0, 0, . . . , 0)1×n. Supondremos
que (I − T )−1 existe y que los estados {1, 2, . . . , n} son transitorios, además, la absorción en el estado
{n+1}, comenzando desde cualquiera estado transitorio, es segura. Como en el caso continuo, deno-
temos a la distribución de probabilidad inicial de la cadena de Markov {Yk}k≥0 por α∗ = (α, αn+1),
donde α = (α1, α2, . . . , αn).

La función de masa de probabilidad (pmf) de una variable aleatoria τ que sigue una DPH de orden
n—denotada por τ ∼ DPH(α, T )— está dada por

fτ (k) =

{
αT k−1t, if k ≥ 1

αn+1, if k = 0.
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La correspondiente cdf se obtiene como

Fτ (k) = 1− αT k1. (4)

Dado que las distribuciones PH son muy importantes hoy en dı́a en diversas áreas de investigación,
su simulación (véase Asmussen et al. (1996), Esparza (2011)) no ha sido dejada de lado. Particu-
larmente, considerando el paquete estadı́stico R, existen dos paquetes que abordan la estimación de
parámetros (y mucho más) de las distribuciones PH de manera muy eficiente: PhaseTypeR de Rivas-
González et al. (2022) y matrixdist de Bladt et al. (2022).

El paquete de R llamado PhaseTypeR contiene todas las funciones clave—media, (co)varianza, pdf,
cdf, función cuantil, muestreo aleatorio y transformaciones de recompensa—tanto para CPH como
para DPH. El paquete llamadomatrixdist1 ajusta distribuciones de PH no homogéneas (IPH) utilizan-
do el algoritmo Esperanza-Maximización (EM) para estimar los parámetros del modelo. Este paquete
también proporciona la densidad, cdf, función cuantil, momentos y la posibilidad de simular desde
la distribución. En este trabajo, se utilizará PhaseTypeR.

3. Relación entre distribuciones PH y sistemas positivos

Una realización positiva implica que las matrices que definen el sistema en (1), dadas por A,B y C,
tienen entradas no negativas. Además, la excitabilidaddel par (A,B) significa que el sistemapuede ser
influenciado mediante una entrada adecuada, permitiendo su control o estabilización. Por ejemplo,
supongamos que tenemos el modelo (1), donde x(t) es el estado del sistema y u(t) es la entrada o
control, supongamos que las matrices A y B están dadas por

A =

[
1 1
0 1

]
, B =

[
0
1

]
.

Para verificar la excitabilidad, construimos la matriz de controlabilidad

C =
[
B AB

]
=

[
0 1
1 1

]
,

cuyo determinante es det(C) = −1 ̸= 0. Dado que la matriz C tiene rango completo, el sistema es
controlable y excitable. Esto significa que es posible influir en cualquier estado x(t) mediante una
entrada adecuada u(t), permitiendo su control o estabilización.

Por otro lado, la matriz A se considera asintóticamente estable si el sistema converge hacia un estado
de equilibrio estable conforme el tiempo tiende a infinito. Es decir, las soluciones del sistema se acercan
a un valor constante en el largo plazo. La matriz A se considera asintóticamente estable si todas sus
autovalores (eigenvalores) tienen módulo menor que 1 en el caso discreto, o parte real negativa en el
caso continuo. Por ejemplo, si la matriz A en el sistema (1) está dada por

A =

[
0.5 0.2
0.1 0.4

]
,

sus eigenvalores están dados por

λ1 = 0.6, λ2 = 0.3.

Ası́ pues, como |λ1| < 1 y |λ2| < 1, el sistema es asintóticamente estable, lo que significa que cualquier
estado inicial x(0) eventualmente converge a un estado de equilibrio conforme t→ ∞. Se recomienda

1https://cran.r-project.org/web/packages/matrixdist/index.html
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Relación entre distribuciones PH y sistemas positivos 7

la referencia De Leenheer y Aeyels (2001) para más detalles sobre la estabilidad en sistemas lineales
positivos.

Otro concepto importante en este estudio es la matriz de Metzler. Una matriz es de Metzler si es una
matriz cuadrada y todos sus elementos fuera de la diagonal principal son no negativos. Este concepto
es relevante en el análisis de estabilidad de sistemas dinámicos, especialmente enmodelos de sistemas
con tasas de transición. Por ejemplo, consideremos la matriz

A =

−2 3 0
1 −4 2
0 1 −3

 ,
podemos observar que todos los elementos fuera de la diagonal principal son mayores o iguales a
cero, es decir

Aij ≥ 0, para i ̸= j.

Esta propiedad es fundamental en la teorı́a de sistemas positivos, donde la evolución del sistema
preserva la no negatividad de las variables de estado.

Un caso común donde aparecen matrices de Metzler es en modelos de sistemas dinámicos lineales de
la forma

ẋ(t) = Ax(t),

donde A es una matriz de Metzler y x(t) representa un estado del sistema en el tiempo t. En estos
casos, la no negatividad de los elementos fuera de la diagonal principal permite garantizar que las
trayectorias del sistema sean no negativas si las condiciones iniciales también lo son.

En particular Cvetković (2019) estudió la estabilización de matrices de Metzler y su aplicación en
sistemas dinámicos, proporcionandométodos para encontrar lamatriz deMetzler establemás cercana
a una inestable.

En el análisis de sistemas positivos, la irreducibilidad también juega un papel fundamental. Una ma-
trizA se considera irreducible si su grafo dirigido asociado es fuertemente conexo, lo que implica que
todos los estados del sistema están interconectados de alguna manera. Esto garantiza que ninguna
subestructura del sistema evolucione de manera completamente independiente.

Sea A ∈ Rn×n una matriz de Metzler, ası́, su eigenvalor real dominante λmáx(A) cumple con las si-
guientes propiedades: si A es irreducible, el teorema de Perron-Frobenius garantiza que λmáx(A) es
real y tiene un vector propio asociado estrictamente positivo; siA es reducible, el eigenvalor dominan-
te aún es real, pero pueden existir otros eigenvalores de igual magnitud. La estabilidad del sistema
depende de λmáx(A), si λmáx(A) < 0, el sistema es asintóticamente estable; si λmáx(A) = 0, el sistema
es marginalmente estable y si λmáx(A) > 0, el sistema es inestable. Recientemente, la referencia Cui
et al. (2025) extiende el concepto de matrices de Metzler a tensores de Metzler y analiza sistemas
positivos en hipergrafos, incluyendo discusiones sobre estabilidad e irreducibilidad.

Con todo lo anterior, la referencia Commault y Mocanu (2003) mostró que la irreducibilidad permite
asegurar que el sistema positivo puede ser descrito mediante una realización PH que, además de ser
positiva, cumple con una condición adicional de excitabilidad. Es decir, el sistema no solo mantiene
la no negatividad de sus estados, sino que también puede ser influenciado de manera controlada
mediante una entrada adecuada.
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3.1. Tiempo continuo

Considere el sistema dado en (1). Sea

∆ =

[
A B
0 0

]
(5)

una matriz de dimensión (n+ 1)× (n+ 1), llamada la realización aumentada.

Asumiendo que (A,B) es excitable, y que A es asintóticamente estable y es una matriz de Metzler
(i.e., el eigenvalor real dominante de A satisface λmáx(A) < 0), entonces hay un eigenvector positivo
ν = (ν1, . . . , νn, νn+1) de ∆, i.e., ∆ν = 0, tal que ν es estrictamente positivo (i.e., ν > 0) (ver Lema 3
de Kim (2015)).

Teorema 1

(Kim, 2015)Considere el sistemapositivo a tiempo continuo con la realización positiva (A,B,C)
tal que (A,B) es excitable, y A es asintóticamente estable y una matriz de Metzler. Entonces, el
sistema positivo es transformado en un generador infinitesimal CPH tal que

α̃ = CU

T̃ = U−1AU

t̃ = U−1B = −T̃1
(6)

donde

U = diag(ν1, . . . , νn)/νn+1. (7)

Por lo tanto, una realización positiva excitable puede ser transformada en la forma de CPH(α̃, T̃ ),
i.e., la realización positiva es un superconjunto de las representaciones PH.

3.2. Tiempo discreto

En la referencia Kim (2015), también se presenta el siguiente teorema que muestra que una realiza-
ción positiva puede ser transformada en una representaciónDPH(α̃, T̃ )multiplicada por un escalar
positivo (i.e., α̃ no necesariamente es un vector de probabilidad).

Teorema 2

Considere el sistema positivo a tiempo discreto con la realización positiva (A,B,C) tal que
(A,B) es excitable y estable. Entonces, existe una matriz no singularM dada por

M = diag(z) donde z = (I −A)−1B son positivos, (8)

tal que la realización (α̃, T̃ , t̃) que está definida por
α̃ = CM

T̃ =M−1AM

t̃ =M−1B

(9)

tiene las propiedades de una representación DPH tal que t̃ = (I − T̃ )1 y α̃ ≥ 0.

https://revistas.tec.ac.cr/index.php/matematica
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3.3. Relación general

Suponga que se tiene la representación PH(α̃, T̃ ) obtenida como en el sistema (6) para el caso con-
tinuo y como en (9) para el caso discreto. Como el vector α̃ podrı́a no ser un vector de probabilidad
(sus componenten podrı́an no sumar 1), por lo tanto, definimos el siguiente vector de probabilidad
inicial

α̃∗ := α̃/ψ

donde ψ ∈ R+ denota la constante de normalización, i.e., ψ =
∑n

i=1 α̃i.

Consideremos una nueva variable aleatoria X∗ ∼ PH(α̃∗, T̃ ) y definamos

yPH(t) = FX∗(t) · ψ · u(t) (10)

donde FX∗(·) es la cdf obtenida mediante la fórmula (2) para el caso continuo, o mediante la fórmula
(4) para el caso discreto, y u(t) está definido en (1). Entonces, la realización (A,B,C) del modelo (1)
está relacionada con la distribución PH (ver Teorema 4 de Commault y Mocanu (2003), y Teorema 4
de Kim (2013)) por

y(t) = yPH(t),

donde y(t) está dado en el sistema (1) y yPH(t) está dado en la ecuación (10).

La formulación combina elementos tanto del modelado probabilı́stico (a través de FX∗(t)) como de la
teorı́a de control (a través de u(t)). El productoFX∗(t)·ψ ·u(t) captura ası́ la probabilidad acumulativa
de absorción, escalada por ψ para la normalización, y además modificada por u(t) para permitir un
control dinámico sobre la salida del sistema.

En particular, si 0 < ψ < 1, y si X ∼ PH(α̃, T̃ ), la realización entre sistemas positivos y esta variable
aleatoria está dada por:

yCPH(t) =
(FX(t)− (1− ψ))

fX(0)
· u(t), con fX(0) = α̃t̃ > 0,

yDPH(t) = (FX(t)− (1− ψ)) · u(t), tal que fX(0) = 1− ψ > 0,

donde a su vez, fX(0) = αn+1 representa la probabilidad de que la cadena de Markov inicie en el
estado absorbente.

Aunque la relación entre distribuciones tipo fase y sistemas positivos ha sido explorada ampliamente
desde la perspectiva teórica (Kim, 2015; Commault y Mocanu, 2003), la literatura carece de estudios
que profundicen en aplicaciones prácticas que ejemplifiquen esta conexión. En este sentido, la pre-
sente investigación aporta de manera original al presentar casos concretos que ilustran la utilidad de
estas teorı́as en contextos reales, cubriendo un vacı́o identificado en los estudios previos.

4. Ejemplos numéricos

A continuación, se presenta un ejemplo numérico para el caso continuo y dos aplicaciones para el
caso discreto.
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4.1. Caso continuo

Suponga que tenemos un sistema con los siguientes parámetros

A =

−2 1 0
0 1 0
0 0 −1

 ; B =

11
1

 ; C =
[
1 0 0

]
.

Sea η > |x| para todo x ∈ σ(A) (espectro deA), y ν un eigenvector asociado con el máximo eigenvalor
de ∆+ ηI , donde ∆ es como en la ecuación (5). En este ejemplo, η = 2,

ν =
[
0.5222330, 0.6963106, 0.3481553, 0.3481553

]
y la matriz U , usando la ecuación (7) está dada por

U =

1.5 0 0
0 2 0
0 0 1

 .
Usando (6) se obtienen los parámetros CPH los cuales están dados por

α̃ =
[
1.5 0 0

]
; T̃ =

−2 1.33̄ 0
0 −1 0.5
0 0 −1

 ; t̃ =

0.66̄0.5
1

 .
Se define α̃∗ =

[
1 0 0

]
; yψ = 1.5. Por lo tanto, seaX∗ ∼ CPH(α̃∗, T̃ ). Lamatriz T̃ describe las tasas

de transición entre fases,mientras que el vector t̃ representa las tasas de absorción hacia el estado final.
Se observa que la primera fase tiene una alta probabilidad de transición a la segunda fase, mientras
que la segunda fase presenta una absorción moderada, indicando que parte del proceso permanece
más tiempo en esta fase antes de completarse. En la Figura 1a se presenta la gráfica de la cadena de
Markov a tiempo continuo (CTMC) de X∗, sus pdf y cdf son presentadas en la Figura 1b.
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Figura 1: Ejemplo de las intensidades de una variable aleatoria CPH, además de
su pdf y cdf. Elaboración propia.
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Esta última muestra que la mayor densidad se concentra en la primera fase, lo que indica que la
mayorı́a de los eventos completan rápidamente la primera transición. La cdf refleja que aproximada-
mente el 50% de los procesos se absorben antes del tiempo t1, mientras que una fracción significativa
permanece más tiempo en el sistema, mostrando la heterogeneidad en la duración de las fases.

En aplicaciones prácticas, como la modelación de tiempos de espera en sistemas de atención médica,
las fases del CPH pueden interpretarse como etapas del proceso de atención de un paciente: regis-
tro, diagnóstico, tratamiento y recuperación. La matriz T̃ refleja las tasas de transición entre etapas,
mientras que el vector t̃ indica la probabilidad de que un paciente complete el proceso en cada fa-
se. La pdf de X∗ permite identificar tiempos crı́ticos donde los pacientes tienden a permanecer más
tiempo, lo que ayuda a optimizar la asignación de recursos médicos y reducir los tiempos de espera.
La cdf proporciona estimaciones acumuladas del tiempo total de atención, útiles para la planificación
hospitalaria, la programación de citas y la distribución del personal.

Se establece una relación entre la cdf deX∗ y la realización del sistema positivo a través de la fórmula
(10), empleando u(t) = 50 para todo t ∈ [0, 10]. Ambas realizaciones se ilustran en la Figura 2. Como
se puede observar en dicha figura, ambas realizaciones coinciden.
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Figura 2: Realizaciones tanto de una variable aleatoria CPH transformada como
del sistema positivo. Elaboración propia.

Usando la ecuación (3), se calculan las probabilidades de transición en diferentes momentos: de 0 a
8. En la Figura 3 se presentan estas probabilidades de transición.
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Figura 3: Probabilidades de transición de una variable aleatoria CPH en tiempos
diferentes. Elaboración propia.

4.2. Caso discreto

4.2.1. Dinámica de estudiantes

Se considera una aplicación enfocada en la dinámica de estudiantes2. El enunciado del problema gira
en torno a un curso de pregrado de 3 años con varias restricciones clave. En primer lugar, las ta-
sas de aprobación, reprobación y abandono de los estudiantes permanecen relativamente constantes.
Además, la inscripción directa en el 2º y 3º año académico está prohibida, lo que impone una pro-
gresión secuencial a lo largo del curso. Asimismo, los estudiantes tienen una restricción de no poder
inscribirse por más de 3 años, lo que añade una limitación temporal a su trayectoria académica. Estas
restricciones, en conjunto, configuran el panorama educativo, influyendo en la progresión de los es-
tudiantes y en los resultados académicos dentro del marco del programa de pregrado. La notación es
la siguiente:

k: Año.

xi(k): Número de estudiantes en el grado i, i = 1, 2, 3 al año k.

u(k): Número de estudiantes de nuevo ingreso al año k.
2http://cse.lab.imtlucca.it/∼bemporad/teaching/ac/pdf/04a-TD sys.pdf
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y(k): Número de graduados al año k.
ξi: Tasa de aprobación en el grado i, donde 0 ≤ ξi ≤ 1.
βi: Tasa de reprobación en el grado i, donde 0 ≤ βi ≤ 1.
γi: Tasa de abandono en el grado i, donde γi = 1− ξi − βi ≥ 0.

El sistema lineal de tercer orden a tiempo discreto está dado por:

x1(k + 1) = β1x1(k) + u(k)

x2(k + 1) = ξ1x1(k) + β2x2(k)

x3(k + 1) = ξ2x2(k) + β3x3(k)

y(k) = ξ3x3(k).

Escrito en forma matricial queda como sigue:

x(k + 1) =

β1 0 0
ξ1 β2 0
0 ξ2 β3

x(k) +
10
0

u(k)
y(k) =

[
0 0 ξ3

]
x(k).

Ası́, el sistema queda representado por las siguientes matrices:

A =

β1 0 0
ξ1 β2 0
0 ξ2 β3

 ; B =

10
0

 ; C =
[
0 0 ξ3

]
.

Usando (8) se obtiene que la matrizM está dada por:

M =


1

1−β1
0 0

0 ξ1
(1−β1)(1−β2)

0

0 0 ξ1ξ2
(1−β1)(1−β2)(1−β3)

 ;

usando (9) los parámetros DPH están dados por

α̃ =
[
0 0 ξ1ξ2ξ3

(1−β1)(1−β2)(1−β3)

]
; T̃ =

 β1 0 0
1− β2 β2 0

0 1− β3 β3

 ; t̃ =

1− β1
0
0

 . (11)

Note que ψ = ξ1ξ2ξ3
(1−β1)(1−β2)(1−β3)

≤ 1, ası́ que el vector α̃ definido en (9) podrı́a no ser un vector de
probabilidad. De hecho, en tal caso, (1−ψ)×100 representarı́a el porcentaje de abandono de los estu-
diantes. En particular, cuando ψ = 1, la representación dada en (11) corresponde a una distribución
binomial negativa generalizada (Varmazyar et al., 2019).

Esta representación DPH de la dinámica de los estudiantes tiene aplicaciones prácticas en el ámbito
educativo y de gestión académica. Por ejemplo, permite estimar la probabilidad de que un estudiante
abandone, permanezca o avance en cada fase de su trayectoria, lo cual puede ser utilizado para iden-
tificar etapas crı́ticas donde se requiere intervención. Asimismo, facilita la simulación de distintos
escenarios educativos, como cambios en polı́ticas de apoyo, tutorı́as o programas de retención, per-
mitiendo a los administradores y responsables de planificación académica anticipar efectos sobre la
permanencia y éxito de los estudiantes. De estamanera, los resultados numéricos obtenidosmediante
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la modelación DPH ofrecen una herramienta cuantitativa para la toma de decisiones y la mejora de
estrategias educativas.

Supongamos por ejemplo que ξ1 = 0.60, ξ2 = 0.80, ξ3 = 0.9, β1 = 0.20, β2 = 0.15, β3 = 0.08, y u(k) =
50, para k = 0, 1, 2, . . . , 10, entonces la constante de normalización está dada por ψ = 0.6905371.
Tomando α̃∗ =

[
0 0 1

], T̃ y t̃, en la Figura 4 presentamos la cdf, pmf y una muestra aleatoria de
tamaño 1000 de la variable aleatoria X∗ ∼ DPH(α̃∗, T̃ ). La media de la muestra aleatoria fue 3.482;
es decir, en promedio, los estudiantes tardan aproximadamente tres años y medio en graduarse.
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Figura 4: Ejemplo de las funciones cdf y pmf de una variable aleatoria
DPH(α̃∗, T̃ ). Elaboración propia.

En la Figura 5 se presentan las realizaciones del modelo (1) y la realización de la variable X∗ ∼
DPH(α̃∗, T̃ ) usando la formula (10), las cuales efectivamente coinciden.
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Figura 5: Realizaciones tanto del sistema positivo (y(k)) como de la variable alea-
toria DPH (yDPH(k)). Elaboración propia.

Basándonos en los datos presentados en las Figuras 4b y 5, se puede observar que aproximadamente
el 63% de los estudiantes completan sus estudios al final de su tercer año, mientras que el 27% de los
estudiantes finalizan al final de su cuarto año. Sin embargo, la realización del sistema no proporciona
información sobre el porcentaje de estudiantes que abandonan sus estudios. Ası́ pues, para conocer
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este porcentaje, en la Figura 6 se presenta la pmf de X∗ ∼ DPH(α̃∗, T̃ ) y X ∼ DPH(α̃, T̃ ).

0.0

0.2

0.4

0.6

0 1 2 3 4 5 6 7 8 9 10

Years

P
ro
ba
bi
lit
y Function

pmf

pmf_IniProb

Comparison of probabilities

Tiempo (Años)

Pr
ob

ab
ilid

ad

Comparación de probabilidadese

de 0

auste

Figura 6: pmf considerando un vector inicial normalizado y sin normalizar. Ela-
boración propia.

En la gráfica de esta última variable se puede observar que alrededor del 31% de los estudiantes no
se gradúan (porcentaje que se obtiene de 1− ψ = 1− 0.6905371), mientras que el 43% completa sus
estudios en tres años y el 19% lo hace en cuatro años.

4.2.2. Cadena de suministro

Supongamos que en cada mes k, la entidad S compra una cantidad u(k) de materia prima. Posterior-
mente, una fracción δ1 de la materia prima adquirida es descartada, mientras que otra fracción ξ1 se
dirige al productor P . Al recibirla, el productor P procesa la materia prima, obteniendo un produc-
to del cual una fracción ξ2 se vende al minorista R, mientras que la fracción restante δ2 se considera
inutilizable y se descarta. El minorista R interactúa con los clientes, vendiendo una fracción γ3 de los
productos recibidos del productor P , mientras que también experimenta devoluciones de productos
defectuosos, con una fracción β3 siendo devueltos cada mes. Ası́ pues, el diagrama de flujo de este
modelo se puede ver como en la Figura 7.

Figura 7: Diagrama de flujo del modelo de cadena de suministro. Elaboración
propia con base en Bemporad (2010).
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El modelo matemático está dado por:


x1(k + 1) = (1− ξ1 − δ1)x1(k) + u(k)

x2(k + 1) = ξ1x1(k) + (1− ξ2 − δ2)x2(k) + β3x3(k)

x3(k + 1) = ξ2x2(k) + (1− β3γ3)x3(k)

y(k) = γ3x3(k)

(12)

donde

k: Mes.

x1(k): Materia prima en la entidad S al mes k.

x2(k): Productos del productor P al mes k.

x3(k): Productos del minorista R al mes k.

y(k): Productos vendidos a los clientes al mes k.

Tomando los valores δ1 = 0.15, δ2 = 0.08, ξ1 = 0.6, ξ2 = 0.8, β3 = 0.05, γ3 = 0.8, y u(k) = 100, para
k = 0, 1, 2, . . . , 13; y siguiendo la misma metodologı́a que en la aplicación anterior, se obtienen los
parámetros DPH usando la ecuación (9):

α̃ =
[
0 0 0.72

]
; T̃ =

0.25 0.00 0.00
0.83 0.12 0.05
0.00 0.85 0.15

 ; t̃ =

0.750
0

 .

Si α̃∗ =
[
0 0 1

] y X∗ ∼ DPH(α̃∗, T̃ ), la interpretación es como sigue: nos referiremos al estado
absorbente como “Cliente”, yX∗ medirá el tiempo (enmeses) que le toma al producto llegar al cliente.

La representación DPH obtenida permite analizar demanera detallada la dinámica del producto den-
tro de la cadena de suministro. Cada fase del proceso representa una etapa de producción o distribu-
ción, y la matriz T̃ describe las probabilidades de transición entre estas etapas, mientras que t̃ indica
la probabilidad de que el producto avance hacia el estado absorbente, identificado como “Cliente”. La
variable aleatoria X∗ representa el tiempo que tarda un producto en llegar al cliente final. Esta infor-
mación es útil para identificar posibles cuellos de botella en la cadena de suministro, estimar tiempos
de entrega y planificar inventarios. Además, permite simular distintos escenarios, como cambios en
las tasas de producción o retrasos en el transporte, proporcionando una herramienta cuantitativa para
optimizar la logı́stica y mejorar la eficiencia del sistema.

Tomando una muestra aleatoria de X∗ de tamaño 1000, se obtiene una media de 3.855. Más aún, de
su función pmf se obtiene que el 53% de los productos llegan al cliente en 3 meses, 29% en 4 meses,
12% en 5 meses, 5% en 6 meses, y 1% en más de 7 meses.

En la Figura 8a se presentan las realizaciones del sistema (12) y la variable aleatoria DPH. En la Figura
8b se presentan las probabilidades de las variables aleatorias DPH sin y con la probabilidad de que la
absorción ocurra en el primer instante de tiempo que es 0.28. Esto quiere decir que aproximadamente
el 72% de los productos se vende a los clientes, mientras que el restante 28% no está llegando a ellos
(por diversas cuestiones).
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Figura 8: Aplicación de sistemas positivos y DPH a la cadena de suministro. Ela-
boración propia.

5. Conclusiones

Estudiar o convertir un sistema positivo en una distribución PH puede proporcionar una variedad
de beneficios, incluyendo la simplificación del modelo, capacidades de modelado y predicción, in-
terpretación intuitiva, análisis de rendimiento, facilitación de aplicaciones interdisciplinarias, entre
muchos otros. Estas ventajas hacen que este enfoque sea valioso en una amplia gama de contextos de
investigación y aplicaciones prácticas.

Este trabajo ha mostrado la compleja relación entre los sistemas lineales positivos y las distribuciones
PH, tanto continuas como discretas. A través de nuestro análisis, se ha mostrado la utilidad de las
distribuciones PH para capturar de manera efectiva el comportamiento estocástico de la dinámica del
sistema, proporcionando información valiosa sobre sus caracterı́sticas probabilı́sticas.

Además, los resultados obtenidos subrayan la importancia de incorporar la incertidumbre inherente
en el modelado y análisis de sistemas, especialmente en el contexto de sistemas dinámicos complejos.
Al aprovechar el robusto marco teórico que ofrecen las distribuciones PH, este trabajo avanza en la
comprensión de la dinámica de dichos sistemas y sienta las bases para futuras investigaciones en esta
área interdisciplinaria.

La integración de modelos probabilı́sticos como las distribuciones PH en aplicaciones prácticas tiene
el potencial de mejorar significativamente la confiabilidad, eficiencia y robustez de diversos sistemas
en áreas cientı́ficas y de ingenierı́a. En conjunto, este estudio enriquece el discurso sobre modelado
y análisis estocástico, ofreciendo nuevas perspectivas y oportunidades para explorar la dinámica de
sistemas complejos desde una visión innovadora y aplicada.

Aunque las distribuciones PH ofrecen una poderosa herramienta para modelar y analizar sistemas
positivos debido a su flexibilidad y raı́ces en procesos de Markov, también presentan limitaciones
importantes. En particular, las distribuciones PH pueden volverse computacionalmente complejas a
medida que aumenta la dimensión del sistema, dificultando su aplicación práctica en casos con un
gran número de estados o variables. Además, existen situaciones donde otros enfoques podrı́an ser
más apropiados, como métodos basados en procesos de Lévy o modelos no paramétricos, especial-
mente cuando se requiere captar dinámicas nomarkovianas o dependencias a largo plazo. Por último,
la necesidad de calibrar cuidadosamente los parámetros para representar adecuadamente fenómenos
reales implica desafı́os metodológicos que deben ser considerados. Reconocer estas limitaciones abre
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oportunidades para el desarrollo de metodologı́as hı́bridas o extensiones del marco PH que amplı́en
su aplicabilidad en futuros trabajos.
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