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Resumen: En este articulo se considera la relaciéon entre las distribuciones tipo fase y sistemas positi-
vos a través de ejemplos précticos y aplicaciones. Las distribuciones tipo fase, cominmente utilizadas
en la modelacién de sistemas dindmicos, representan la evolucién temporal de un conjunto de varia-
bles en funcién de su fase. Por otro lado, los sistemas positivos, que prevalecen en una amplia gama
de disciplinas, son aquellos en los que las variables involucradas mantienen valores no negativos a
lo largo del tiempo. A través de aplicaciones como la dindmica de la trayectoria de estudiantes y la
gestion de la cadena de suministro, se muestra cémo las distribuciones tipo fase pueden ser ttiles
para describir y analizar sistemas positivos, ofreciendo una perspectiva sobre su comportamiento
dindmico. El principal objetivo de este trabajo es establecer conexiones claras entre estos conceptos
aparentemente diferentes, destacando su relevancia y utilidad en diversos campos de estudio. Los
resultados aqui presentados contribuyen a una mejor comprensién de la interaccién entre la teorfa
de las distribuciones tipo fase y la teoria de sistemas positivos, abriendo nuevas oportunidades para
futuras investigaciones en este campo interdisciplinario.

Palabras Clave: Distribucién tipo fase, sistemas positivos, sistemas de control.

Abstract: In this paper, we consider the relationship between phase-type distributions and positi-
ve systems through practical examples and applications. Phase-type distributions, commonly used
in modelling dynamic systems, represent the temporal evolution of a set of variables based on their
phase. On the other hand, positive systems, prevalent in a wide range of disciplines, are those where
the involved variables maintain non-negative values over time. Through applications such as student
trajectory dynamics and supply chain management, it is shown how phase-type distributions can be
useful for describing and analyzing positive systems, offering insight into their dynamic behavior.
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Our main objective is to establish clear connections between these seemingly different concepts, high-
lighting their relevance and utility in various fields of study. The findings presented here contribute to
a better understanding of the interaction between phase-type distribution theory and positive system
theory, opening new opportunities for future research in this exciting interdisciplinary field.

Keywords: Phase-type distribution, positive systems, control systems.

Resumo: Neste artigo, considera-se a relacdo entre distribui¢des do tipo fase e sistemas positivos
por meio de exemplos praticos e aplicagdes. As distribui¢des do tipo fase, comumente utilizadas na
modelagem de sistemas dindmicos, representam a evolugdo temporal de um conjunto de varidveis
em funcdo de sua fase. Por outro lado, os sistemas positivos, que prevalecem em uma ampla gama
de disciplinas, sdo aqueles nos quais as varidveis envolvidas mantém valores ndo negativos ao longo
do tempo. Através de aplicagdes como a dindmica da trajetéria de estudantes e a gestdo da cadeia
de suprimentos, mostra-se como as distribui¢des do tipo fase podem ser tteis para descrever e anali-
sar sistemas positivos, oferecendo uma perspectiva sobre seu comportamento dindmico. O principal
objetivo deste trabalho é estabelecer conexdes claras entre esses conceitos aparentemente diferentes,
destacando sua relevancia e utilidade em diversos campos de estudo. Os resultados aqui apresenta-
dos contribuem para uma melhor compreensdo da interacdo entre a teoria das distribui¢ées do tipo
fase e a teoria de sistemas positivos, abrindo novas oportunidades para futuras pesquisas neste campo
interdisciplinar.

Palavras-chave: Distribuicdo do tipo fase, sistemas positivos, sistemas de controle.

1. Introduccion

Las representaciones positivas aparecen de forma natural en la modelacién de diversos sistemas fisi-
cos, econémicos y ecolégicos (Farina & Rinaldi, 2000; Luenberger, 1979). Desde hace tiempo, ha exis-
tido un esfuerzo por unir a las comunidades de teoria de control y teoria de la probabilidad, ya que
ambos campos han desarrollado sus propias teorfas a partir de una raiz comun: la teoria de Perron-
Frobenius (Horn & Johnson, 2012; Seneta, 2006). En particular, la referencia Commault y Mocanu
(2003) proporcioné un puente entre estas comunidades mediante el uso de distribuciones de tipo
fase.

Las distribuciones tipo fase (PH por sus siglas en inglés Phase-type) representan el tiempo hasta la
absorcién en una cadena de Markov absorbente (Neuts, 1975, 1981b). Asi pues, son usadas gene-
ralmente para modelar varios tiempos aleatorios, en particular, aquellos que aparecen en sistemas
de manufactura, como tiempos de procesamiento, tiempos de falla, tiempos de reparacién, etc. La
propiedad Markoviana de estas distribuciones facilita el uso de métodos computacionales eficientes
basados en matrices para evaluar su desempefio (Bladt & Nielsen, 2017).

Las distribuciones PH son una clase de distribucién de probabilidad que son muy usadas en la mode-
lacién estocdstica para representar fendmenos aleatorios a tiempo continuo —denotado por CPH—
o a tiempo discreto —denotado por DPH— (Buchholz et al., 2014; Fackrell, 2009). Estas distribucio-
nes estdn caracterizadas por su representacion PH (Horvéath y Telek, 2009; O’Cinneide, 1989), que
describe la evolucion de un proceso estocastico en términos de transiciones entre diferentes fases.

Como se destaco en la referencia Kim (2015), existe una conexién entre realizaciones positivas y una
representacion PH ya sea a tiempo continuo o a tiempo discreto. En las distribuciones PH, las variables
aleatorias representan el tiempo hasta que cierto evento ocurre, por ejemplo, el tiempo que pasa hasta
que el sistema falla o el tiempo hasta que un cliente llega a algtin servicio. La distribucién de cada
una de estas variables aleatorias estd especificada por una funcién matriz-exponencial, que describe
la funcién de densidad o de distribucién de probabilidad.
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Estudiar o convertir un sistema positivo en una distribucién PH puede ser benéfico por varias razo-
nes. Por ejemplo, se podria simplificar su complejidad y facilitar su andlisis (Bladt & Nielsen, 2017);
ademds, las distribuciones PH son conocidas por tener propiedades matematicas favorables que pue-
den hacer el anélisis de sistemas dindmicos mds manejables (Esparza, 2011); pueden proveer una
representacion efectiva y compacta de la evolucién temporal de un sistema positivo, permitiendo mo-
delar y predecir el comportamiento del sistema en el tiempo, lo cual es crucial para planear y tomar
decisiones en varias aplicaciones. Ademads, representar el sistema en términos de distribuciones PH
puede ofrecer una interpretacién intuitiva del comportamiento dindmico del sistema positivo, ayu-
dando a los investigadores a tener un mejor entendimiento de cémo las variables del sistema evo-
lucionan y se relacionan entre si. Inclusive, es posible aprovechar la gran cantidad de herramientas
tecnolégicas disponibles para analizar distribuciones de probabilidad para evaluar el desemperio del
sistema en términos de métricas tales como fiabilidad, disponibilidad y eficiencia.

Si bien el estudio de convertir sistemas positivos en distribuciones PH se ha abordado en algunos
articulos (Commault & Mocanu, 2003; Kim, 2015), la literatura existente se mantiene limitada en al-
cance, dejando espacio significativo para mas exploracién e investigacion. Es evidente que este tema
no ha recibido una atencién generalizada entre los investigadores, por ello, es importante considerar
para mas estudios de comprension y un entendimiento mas profundo de esta relacion.

Dado el incremento en la relevancia de las distribuciones PH (Ahmad & Bladt, 2023; Hobolth et al.,
2024), aprovechar la existencia de algoritmos de estimacién se vuelve cada vez més importante. Por
ejempo, utilizar algoritmos pre-programados disponibles en el paquete estadistico R para la estima-
cién de distribuciones PH tiene varias ventajas (Bladt et al., 2022; Rivas-Gonzélez et al., 2022). En
primer lugar, R ofrece un amplio ecosistema de paquetes estadisticos disefiados para diversas tareas
de estimacion, incluyendo la estimacién de maxima verosimilitud (MLE) y la inferencia Bayesiana.
Al utilizar estos recursos, se puede agilizar el proceso de modelado y centrarse mds en el anélisis de
datos y su interpretacion. Ademads, la naturaleza de c6digo abierto de R fomenta la transparencia y la
reproducibilidad, asegurando que los procedimientos de estimacién puedan ser facilmente examina-
dos y replicados. Adicionalmente, la disponibilidad de documentacién y comunidades de usuarios
facilita atin mds la adopcién e implementacién de estos algoritmos. Por lo tanto, incorporar algoritmos
de estimacién basados en R para distribuciones PH mejora la eficiencia, fiabilidad y accesibilidad de
los esfuerzos de modelado.

Asi pues, el objetivo principal de este trabajo es proporcionar ejemplos practicos y simulados utilizan-
do el paquete R para establecer conexiones claras entre las distribuciones PH y los sistemas positivos,
destacando su relevancia y utilidad en diversos campos de estudio.

La motivacién principal de este trabajo radica en la necesidad de comprender y modelar sistemas
dindmicos en los que las variables deben mantenerse no negativas, como ocurre en contextos de ges-
tion de cadenas de suministro, poblacién estudiantil o procesos de manufactura. Aunque las distri-
buciones PH se utilizan ampliamente para representar tiempos de espera y procesos estocdsticos, su
aplicacién explicita en la modelacién de sistemas positivos no ha sido explorada de manera sistemati-
ca. Este estudio busca llenar ese vacio, mostrando cémo las distribuciones PH pueden ofrecer una
representacion precisa y flexible de la evolucién temporal de variables positivas, facilitando el anali-
sis, la simulacién y la prediccion del comportamiento de sistemas reales en diversas disciplinas.

Este articulo estd organizado de la siguiente manera. En la Seccién 2, se muestran los principales
antecedentes sobre los sistemas lineales positivos y las distribuciones PH. La relacién entre estos temas
se presenta en la Seccién 3. Los ejemplos numéricos se muestran en la Seccién 4, tanto para el tiempo
continuo como discreto. Comentarios finales se presentan en la Seccién 5.
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2. Antecedentes

En esta secciéon se proporciona informacién sobre tres componentes esenciales para este trabajo: los
sistemas lineales positivos, las distribuciones CPH vy las distribuciones DPH. Los sistemas lineales
positivos representan una clase de sistemas dindmicos caracterizados por estados y parametros no
negativos, cominmente encontrados en diversas aplicaciones en ingenieria y ciencia. Comprender su
comportamiento y propiedades sienta las bases para nuestra investigacion. Posteriormente, las dis-
tribuciones CPH y las distribuciones DPH sirven como modelos probabilisticos capaces de describir
la evolucién temporal de variables aleatorias a tiempo continuo y discreto, respectivamente. Asi, se
pretende esclarecer cémo la naturaleza estocastica inherente a la dindmica de los sistemas puede ser
capturada y analizada de manera efectiva dentro del marco de las distribuciones PH.

2.1. Sistemas lineales positivos

Consideremos un sistema lineal invariante en el tiempo con entrada tinica y salida tinica de la siguien-
te forma

z(t +1) = Az(t) + Bu(t)
y(t) = Cu(t) )

donde z(t) € R, u(t) € R, y(t) e R, A € R7*", B € R y C € RI™ con n € N. Dada la condicién
inicial 2(0) y la secuencia de entrada u(t) cont € R para el caso continuoy ¢t € N para el caso discreto,
es posible predecir toda la secuencia de estados x(t) y salidas y(t), Vt. El estado z(0) resume toda la
historia pasada del sistema. La dimensién n del estado z(¢) € R" se denomina el orden del sistema.
La terna de matrices (A, B, C') denota una realizacién positiva.

Asi, el sistema (1) se dice sistema lineal positivo si, para cualquier entrada no-negativa y estado ini-
cial no-negativo, la trayectoria de estados y la salida son siempre no-negativas (ver Farina y Rinaldi
(2000)). El problema de realizacién para sistemas positivos también ha sido considerado por Kaczo-
rek y Sajewski (2014) y Kim (2013).

2.2. Distribuciones PH a tiempo continuo

Sea {X; : t > 0} un proceso de saltos de Markov con espacio de estados £ = {1,2,...,n,n + 1}
donde los estados {1, 2, ...,n} son transitorios y el estado {n + 1} es un estado absorbente. Entonces
{X} : t > 0} tiene el generador infinitesimal de dimensién (n + 1) x (n + 1) dado por

T t
A=
o i)
donde T' = (t;;) es una matriz cuadrada de n x n, tal que t;; < 0y t;; > 0,7 # j; 0 € R" es el vector
renglén cuyas componentes son todas cero, y t = —7'1, donde 1 es un vector de unos de dimensién

apropiada. Los elementos de ¢, denotados como ¢;, son las intensidades con las cuales el proceso salta
al estado absorbente y son conocidos como las tasas de salida.

Ahora, denotaremos las probabilidades iniciales de {X; : ¢ > 0} como a; = P(Xo = i) para0 <i <n,
asi a* = (o, apy1) donde a = (a1, g, ..., ay). Es comun que a1 = 1 — >0 o

El tiempo hasta la absorciéon dado por

T =inf{t > 0| X; =n+1}
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tiene distribucién tipo fase continua (CPH) y escribimos 7 ~ CPH, (o, T) donde el subindice n se
refiere al nimero de estados transitorios, y algunas veces es omitido.

La funcién de densidad de probabilidad (pdf), funcién de distribucién acumulada (cdf) y la trans-
formada de Laplace Stiltjes de 7, respectivamente, estan definidas por
fr(z) = ael™t
1 — el (2)
f*(s) = a(sI = T)'t.

La matriz de probabilidades de transicién (tpm) al tiempo s de {X; : ¢ > 0} se puede obtener a través
de la siguiente férmula

P(s) = ™. (3)

2.3. Distribuciones PH a tiempo discreto

Las distribuciones tipo fase discretas (DPH, por sus siglas en inglés Discrete Phase-type) son una clase
de distribuciones de probabilidad utilizadas para modelar el tiempo hasta la absorcién en procesos
de Markov en tiempo discreto (Neuts, 1981a). Son ampliamente empleadas en diversos campos, in-
cluyendo la teoria de colas, el analisis de confiabilidad y la evaluacién del rendimiento de sistemas
informdticos y de comunicacién (Asmussen, 2003).

Una distribucién DPH se caracteriza por su matriz de probabilidad de transicién y un vector de pro-
babilidades iniciales. Sea T' = (t;;) la matriz de probabilidad de transicién de dimensién n x n, donde
n es el nimero de fases en la distribucién. La entrada ¢;; representa la probabilidad de transitar de
la fase i a la fase j en un paso de tiempo. Ademads, sea & = («;) el vector de probabilidades iniciales,
donde «; representa la probabilidad de empezar en la fase o estado i.

La probabilidad de transitar de la fase i a la fase j en k pasos de tiempo, denotada como
P(X}) = j|Xo = i), estd dada por la entrada (i, j) de la matriz T*.

Las distribuciones DPH son versatiles y pueden modelar diversos procesos estocasticos con diferentes
caracteristicas. Su flexibilidad las hace valiosas en el andlisis y simulacién de sistemas con dindmica
de eventos discretos (Asmussen et al., 1996; Bladt et al., 2011).

Consideremos una cadena de Markov absorbente finita {Yj}r>o con espacio de estados
E=1{1,2,...,n,n+ 1}, con tpm dada por

T t
r=lo
donde T' = (T}j)nxn, t = (t1,t2,...,tp)nx1, talquet = (I — 1)1,y 0 = (0,0,...,0)1xn. Supondremos
J q y p
que (I — T)~! existe y que los estados {1, 2, ...,n} son transitorios, ademds, la absorcién en el estado

{n+1}, comenzando desde cualquiera estado transitorio, es segura. Como en el caso continuo, deno-
temos a la distribucién de probabilidad inicial de la cadena de Markov {Y} };>0 por o* = (o, apt1),
donde o = (a1, g, ..., ay).

La funcién de masa de probabilidad (pmf) de una variable aleatoria 7 que sigue una DPH de orden
n —denotada por 7 ~ DPH («, T)— estd dada por

aTk= 1t ifk>1
ff(k) = .
On+1, if k=0.
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La correspondiente cdf se obtiene como

Fr(k)=1—aT"1. (4)

Dado que las distribuciones PH son muy importantes hoy en dia en diversas dreas de investigacion,
su simulacién (véase Asmussen et al. (1996), Esparza (2011)) no ha sido dejada de lado. Particu-
larmente, considerando el paquete estadistico R, existen dos paquetes que abordan la estimacién de
pardmetros (y mucho maés) de las distribuciones PH de manera muy eficiente: PhaseTypeR de Rivas-
Gonzalez et al. (2022) y matrixdist de Bladt et al. (2022).

El paquete de R llamado PhaseTypeR contiene todas las funciones clave—media, (co)varianza, pdf,
cdf, funcién cuantil, muestreo aleatorio y transformaciones de recompensa—tanto para CPH como
para DPH. El paquete llamado matrixdist! ajusta distribuciones de PH no homogéneas (IPH) utilizan-
do el algoritmo Esperanza-Maximizacién (EM) para estimar los pardmetros del modelo. Este paquete
también proporciona la densidad, cdf, funcién cuantil, momentos y la posibilidad de simular desde
la distribucién. En este trabajo, se utilizard PhaseTypeR.

3. Relacidn entre distribuciones PH y sistemas positivos

Una realizacion positiva implica que las matrices que definen el sistema en (1), dadas por A, By C,
tienen entradas no negativas. Ademads, la excitabilidad del par (A, B) significa que el sistema puede ser
influenciado mediante una entrada adecuada, permitiendo su control o estabilizacién. Por ejemplo,
supongamos que tenemos el modelo (1), donde z(t) es el estado del sistema y u(t) es la entrada o
control, supongamos que las matrices A y B estan dadas por

el

Para verificar la excitabilidad, construimos la matriz de controlabilidad

01
e—[B AB] = L 1],
cuyo determinante es det(€) = —1 # 0. Dado que la matriz € tiene rango completo, el sistema es
controlable y excitable. Esto significa que es posible influir en cualquier estado x(t) mediante una
entrada adecuada u(t), permitiendo su control o estabilizacién.

Por otro lado, la matriz A se considera asint6ticamente estable si el sistema converge hacia un estado
de equilibrio estable conforme el tiempo tiende a infinito. Es decir, las soluciones del sistema se acercan
a un valor constante en el largo plazo. La matriz A se considera asintéticamente estable si todas sus
autovalores (eigenvalores) tienen médulo menor que 1 en el caso discreto, o parte real negativa en el
caso continuo. Por ejemplo, si la matriz A en el sistema (1) estd dada por

0.5 0.2
A= [0.1 0.4] ’

sus eigenvalores estan dados por

A =06, \=0.3.

Asipues, como |A;| < 1y |A2] < 1, el sistema es asintéticamente estable, lo que significa que cualquier
estado inicial 2(0) eventualmente converge a un estado de equilibrio conforme ¢ — oo. Se recomienda

1https: //cran.r-project.org/web/packages/matrixdist/index.html
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la referencia De Leenheer y Aeyels (2001) para mas detalles sobre la estabilidad en sistemas lineales
positivos.

Otro concepto importante en este estudio es la matriz de Metzler. Una matriz es de Metzler si es una
matriz cuadrada y todos sus elementos fuera de la diagonal principal son no negativos. Este concepto
es relevante en el andlisis de estabilidad de sistemas dindmicos, especialmente en modelos de sistemas
con tasas de transicion. Por ejemplo, consideremos la matriz

—2 3 0
A=|1 -4 2],
0 1 -3

podemos observar que todos los elementos fuera de la diagonal principal son mayores o iguales a
cero, es decir

Aij; >0, parai#j.

Esta propiedad es fundamental en la teorfa de sistemas positivos, donde la evolucién del sistema
preserva la no negatividad de las variables de estado.

Un caso comtin donde aparecen matrices de Metzler es en modelos de sistemas dindmicos lineales de
la forma

@(t) = Ax(t),

donde A es una matriz de Metzler y x(t) representa un estado del sistema en el tiempo ¢. En estos
casos, la no negatividad de los elementos fuera de la diagonal principal permite garantizar que las
trayectorias del sistema sean no negativas si las condiciones iniciales también lo son.

En particular Cvetkovi¢ (2019) estudi6 la estabilizacién de matrices de Metzler y su aplicacién en
sistemas dindmicos, proporcionando métodos para encontrar la matriz de Metzler estable més cercana
a una inestable.

En el andlisis de sistemas positivos, la irreducibilidad también juega un papel fundamental. Una ma-
triz A se considera irreducible si su grafo dirigido asociado es fuertemente conexo, lo que implica que
todos los estados del sistema estdn interconectados de alguna manera. Esto garantiza que ninguna
subestructura del sistema evolucione de manera completamente independiente.

Sea A € R™" una matriz de Metzler, asi, su eigenvalor real dominante A4 (A) cumple con las si-
guientes propiedades: si A es irreducible, el teorema de Perron-Frobenius garantiza que A\pnsx(A) es
real y tiene un vector propio asociado estrictamente positivo; si A es reducible, el eigenvalor dominan-
te atin es real, pero pueden existir otros eigenvalores de igual magnitud. La estabilidad del sistema
depende de Apsx(A), si Amax(A) < 0, el sistema es asintéticamente estable; si Apax(A) = 0, el sistema
es marginalmente estable y si Ap4x(A) > 0, el sistema es inestable. Recientemente, la referencia Cui
et al. (2025) extiende el concepto de matrices de Metzler a tensores de Metzler y analiza sistemas
positivos en hipergrafos, incluyendo discusiones sobre estabilidad e irreducibilidad.

Con todo lo anterior, la referencia Commault y Mocanu (2003) mostré que la irreducibilidad permite
asegurar que el sistema positivo puede ser descrito mediante una realizacién PH que, ademds de ser
positiva, cumple con una condicién adicional de excitabilidad. Es decir, el sistema no solo mantiene
la no negatividad de sus estados, sino que también puede ser influenciado de manera controlada
mediante una entrada adecuada.
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3.1. Tiempo continuo

Considere el sistema dado en (1). Sea

=t 3

una matriz de dimensién (n + 1) x (n + 1), llamada la realizacién aumentada.

Asumiendo que (A, B) es excitable, y que A es asint6ticamente estable y es una matriz de Metzler
(i.e., el eigenvalor real dominante de A satisface Ap4x(A) < 0), entonces hay un eigenvector positivo
v=(Vi,...,Vn,Vny1) de A, ie., Av = 0, tal que v es estrictamente positivo (i.e., v > 0) (ver Lema 3
de Kim (2015)).

Teorema 1
(Kim, 2015) Considere el sistema positivo a tiempo continuo con la realizacién positiva (A, B, C)
tal que (A, B) es excitable, y A es asintéticamente estable y una matriz de Metzler. Entonces, el
sistema positivo es transformado en un generador infinitesimal CPH tal que

a=C0U
T=U"tAU (6)
{=U"'B=-T1
donde
U:diag(yla"'vyn)/yn-f-l' (7)

Por lo tanto, una realizacién positiva excitable puede ser transformada en la forma de CPH(&,T),
i.e., la realizacion positiva es un superconjunto de las representaciones PH.

3.2. Tiempo discreto

En la referencia Kim (2015), también se presenta el siguiente teorema que muestra que una realiza-
cién positiva puede ser transformada en una representaciéon DPH (&, ) multiplicada por un escalar
positivo (i.e., & no necesariamente es un vector de probabilidad).

Teorema 2
Considere el sistema positivo a tiempo discreto con la realizacién positiva (A4, B,C) tal que

(A, B) es excitable y estable. Entonces, existe una matriz no singular M dada por

M = diag(z) donde z = (I — A)"'B  son positivos, (8)

tal que la realizacion (&, T, t) que estd definida por

CM
M~tAM 9)
M~'B

S Hl =}
Il

tiene las propiedades de una representacién DPH tal que t = (I — T)1y & > 0.
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3.3. Relacion general

Suponga que se tiene la representaciéon PH (&, T) obtenida como en el sistema (6) para el caso con-
tinuo y como en (9) para el caso discreto. Como el vector & podria no ser un vector de probabilidad
(sus componenten podrian no sumar 1), por lo tanto, definimos el siguiente vector de probabilidad
inicial

donde ¢ € R, denota la constante de normalizacién, i.e., ¢ = > 7" | &;.

Consideremos una nueva variable aleatoria X* ~ PH(&*,T) y definamos
yru(t) = Fx=(t) - ¥ - u(?) (10)

donde F'x+«(-) es la cdf obtenida mediante la férmula (2) para el caso continuo, o mediante la férmula
(4) para el caso discreto, y u(t) esta definido en (1). Entonces, la realizacién (A, B, C) del modelo (1)
estd relacionada con la distribucién PH (ver Teorema 4 de Commault y Mocanu (2003), y Teorema 4
de Kim (2013)) por

y(t) = ypru(t),

donde y(t) estd dado en el sistema (1) y ypr () estd dado en la ecuacién (10).

La formulacién combina elementos tanto del modelado probabilistico (a través de Fx«(t)) como de la
teoria de control (a través de u(t)). El producto Fx«(t)-1-u(t) captura asi la probabilidad acumulativa
de absorcién, escalada por ¢ para la normalizacién, y ademdas modificada por u(t) para permitir un
control dindmico sobre la salida del sistema.

En particular, si 0 < 1) < 1,y si X ~ PH(&,T), la realizacién entre sistemas positivos y esta variable
aleatoria estd dada por:

(Fx(t) — (1 —v))
fx(0)
ypru(t) = (Fx(t) — (1 —¢))-u(t), talque fx(0)=1-1v >0,

yepu(t) = ~u(t), con fx(0) =at >0,

donde a su vez, fx(0) = a4 representa la probabilidad de que la cadena de Markov inicie en el
estado absorbente.

Aungque la relacién entre distribuciones tipo fase y sistemas positivos ha sido explorada ampliamente
desde la perspectiva tedrica (Kim, 2015; Commault y Mocanu, 2003), la literatura carece de estudios
que profundicen en aplicaciones précticas que ejemplifiquen esta conexién. En este sentido, la pre-
sente investigacion aporta de manera original al presentar casos concretos que ilustran la utilidad de
estas teorias en contextos reales, cubriendo un vacio identificado en los estudios previos.

4. Ejemplos numéricos

A continuacién, se presenta un ejemplo numérico para el caso continuo y dos aplicaciones para el
caso discreto.



10 Revista digital Matematica, Educacion e Internet (https://revistas.tec.ac.cr/index.php/matematica). Vol 26, No 2. Marzo, 2026 — Agosto, 2026

4.1. Caso continuo

Suponga que tenemos un sistema con los siguientes pardmetros

21 0 1
A=10 1 0|; B=|1|; C=[1 0 0].
0 0 —1 1

Sean > |z| paratodo z € o(A) (espectro de A), y v un eigenvector asociado con el méximo eigenvalor
de A + I, donde A es como en la ecuacion (5). En este ejemplo, n = 2,

1/:[0.5222330, 0.6963106, 0.3481553, 0.3481553]

y la matriz U, usando la ecuacién (7) estd dada por

Usando (6) se obtienen los pardmetros CPH los cuales estan dados por

o [-2 133 0 0.66
a=[15 0 0; T=|0 -1 05(; t=]05
0 0 -1 1

Se define &* = [1 0 0} ;y ¥ = 1.5. Por lo tanto, sea X* ~ CPH (&*, T) La matriz T describe las tasas
de transicion entre fases, mientras que el vector ¢ representa las tasas de absorcién hacia el estado final.
Se observa que la primera fase tiene una alta probabilidad de transicién a la segunda fase, mientras
que la segunda fase presenta una absorcién moderada, indicando que parte del proceso permanece
mas tiempo en esta fase antes de completarse. En la Figura 1a se presenta la grafica de la cadena de
Markov a tiempo continuo (CTMC) de X*, sus pdf y cdf son presentadas en la Figura 1b.

CPH

@

1.33333333333333

0.5

Probabilidad
11

/|—>@

'
(S}

0.5

0.666666666666667 1

0.00-
0 1 2 3 i 5 6
@ Tiempo

(a) Intensidades de la CTMC. (b) pdf y cdf.

Figura 1: Ejemplo de las intensidades de una variable aleatoria CPH, ademas de
su pdf y cdf. Elaboracién propia.
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Esta dltima muestra que la mayor densidad se concentra en la primera fase, lo que indica que la
mayoria de los eventos completan rdpidamente la primera transicién. La cdf refleja que aproximada-
mente el 50 % de los procesos se absorben antes del tiempo ¢1, mientras que una fraccion significativa
permanece mds tiempo en el sistema, mostrando la heterogeneidad en la duracion de las fases.

En aplicaciones practicas, como la modelacion de tiempos de espera en sistemas de atencién médica,
las fases del CPH pueden interpretarse como etapas del proceso de atencién de un paciente: regis-
tro, diagnéstico, tratamiento y recuperacién. La matriz T refleja las tasas de transicién entre etapas,
mientras que el vector ¢ indica la probabilidad de que un paciente complete el proceso en cada fa-
se. La pdf de X* permite identificar tiempos criticos donde los pacientes tienden a permanecer mas
tiempo, lo que ayuda a optimizar la asignacién de recursos médicos y reducir los tiempos de espera.
La cdf proporciona estimaciones acumuladas del tiempo total de atencién, ttiles para la planificacién
hospitalaria, la programacién de citas y la distribucién del personal.

Se establece una relacion entre la cdf de X* y la realizacién del sistema positivo a través de la férmula
(10), empleando u(t) = 50 para todo t € [0, 10]. Ambas realizaciones se ilustran en la Figura 2. Como
se puede observar en dicha figura, ambas realizaciones coinciden.

60 -

40-
y(t) CPH

== y(t)

Salida

®
K,
Q
°
)
D
)
°
°
°
°
°
°
°
[
°
°
°
o
°

20- [ 4

°

°

Tiempo

Figura 2: Realizaciones tanto de una variable aleatoria CPH transformada como
del sistema positivo. Elaboracién propia.

Usando la ecuacién (3), se calculan las probabilidades de transicién en diferentes momentos: de 0 a
8. En la Figura 3 se presentan estas probabilidades de transicion.
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Figura 3: Probabilidades de transicién de una variable aleatoria CPH en tiempos
diferentes. Elaboracién propia.

4.2. Caso discreto
4.2.1. Dinamica de estudiantes

Se considera una aplicacion enfocada en la dindmica de estudiantes®. El enunciado del problema gira
en torno a un curso de pregrado de 3 afios con varias restricciones clave. En primer lugar, las ta-
sas de aprobacioén, reprobacién y abandono de los estudiantes permanecen relativamente constantes.
Ademas, la inscripcién directa en el 2° y 3° afio académico estd prohibida, lo que impone una pro-
gresion secuencial a lo largo del curso. Asimismo, los estudiantes tienen una restriccién de no poder
inscribirse por mas de 3 afios, lo que afiade una limitacién temporal a su trayectoria académica. Estas
restricciones, en conjunto, configuran el panorama educativo, influyendo en la progresién de los es-
tudiantes y en los resultados académicos dentro del marco del programa de pregrado. La notacién es
la siguiente:

= k: Afio.
» z;(k): Numero de estudiantes en el grado ¢, i = 1,2, 3 al afio k.

= u(k): Numero de estudiantes de nuevo ingreso al afio k.

2http:/ /cse.lab.imtlucca.it/~bemporad/teaching/ac/pdf/04a-TD_sys.pdf
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» y(k): Numero de graduados al afio k.
= ¢;: Tasa de aprobacién en el grado 7, donde 0 < ¢§; < 1.
= f3;: Tasa de reprobacién en el grado 7, donde 0 < 3; < 1.

= 7;: Tasa de abandono en el grado 4, donde v; =1 — & — 3; > 0.

El sistema lineal de tercer orden a tiempo discreto estd dado por:

z1(k+1) Brxi(k) + u(k)

ra(k+1) = &ai(k) + Baza(k)

v3(k+1) = &za(k) + Bzzs(k)
y(k) = &as(k).

Escrito en forma matricial queda como sigue:

61 0 O 1
xk+1) = |& B2 0| xz(k)+ |0] u(k)
0 & Bs 0

y(k) = [0 0 &Ja(k).

Asi, el sistema queda representado por las siguientes matrices:

B8 0 0 1
A=le B ol B=lo|; c=[0 0 &].
0 & B3 0

Usando (8) se obtiene que la matriz M est4d dada por:

1
e go 0
1
M=| 0 aaamm 0 ;
0 0 &1&2

(1-81)(1-B2)(1-B3)

usando (9) los parametros DPH estdn dados por

. N A1 0 0 1—p

N 18283 . _ . 7 _

=100 (1—ﬁ1)(1—52)(1—53)] ; T=11-5 P2 0f; t= 0 : (11)
0 1-083 fs 0

Note que ¥ = =gy £16 652) =gy < 1, asique el vector & definido en (9) podria no ser un vector de

probabilidad. De hecho, en tal caso, (1 — 1) x 100 representaria el porcentaje de abandono de los estu-
diantes. En particular, cuando ¢ = 1, la representaciéon dada en (11) corresponde a una distribucién
binomial negativa generalizada (Varmazyar et al., 2019).

Esta representacion DPH de la dindmica de los estudiantes tiene aplicaciones practicas en el &mbito
educativo y de gestién académica. Por ejemplo, permite estimar la probabilidad de que un estudiante
abandone, permanezca o avance en cada fase de su trayectoria, lo cual puede ser utilizado para iden-
tificar etapas criticas donde se requiere intervencién. Asimismo, facilita la simulacién de distintos
escenarios educativos, como cambios en politicas de apoyo, tutorias o programas de retencién, per-
mitiendo a los administradores y responsables de planificacién académica anticipar efectos sobre la
permanencia y éxito de los estudiantes. De esta manera, los resultados numéricos obtenidos mediante
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la modelacién DPH ofrecen una herramienta cuantitativa para la toma de decisiones y la mejora de
estrategias educativas.

Supongamos por ejemplo que &; = 0.60, &2 = 0.80,&3 = 0.9, 81 = 0.20, B2 = 0.15, B3 = 0.08, y u(k) =
50, para k = 0,1,2,...,10, entonces la constante de normalizacién estd dada por 1 = 0.6905371.
Tomando a* = [0 0 1], T y i, en la Figura 4 presentamos la cdf, pmf y una muestra aleatoria de
tamario 1000 de la variable aleatoria X* ~ DPH (&*,T). La media de la muestra aleatoria fue 3.482;
es decir, en promedio, los estudiantes tardan aproximadamente tres afios y medio en graduarse.

Muestra aleatoria de DPH

-~ COF
- PMF

. Densidad

Probabilidad

. 4
000 @] . . . . 00
Tiempo Tiempo

(a) cdf y pmf. (b) Muestra aleatoria.

Figura 4: Ejemplo de las funciones cdf y pmf de una variable aleatoria
DPH(a*,T). Elaboracién propia.

En la Figura 5 se presentan las realizaciones del modelo (1) y la realizacién de la variable X* ~
DPH(a*,T) usando la formula (10), las cuales efectivamente coinciden.

w
S

N
S

y(k) DPH
== y(k)

Numero de graduados
L ]

' 1 ’ ’ TiA:empOS(Aﬁos{)3 ' : ) ’
Figura 5: Realizaciones tanto del sistema positivo (y(k)) como de la variable alea-
toria DPH (yppm (k)). Elaboracién propia.

Basandonos en los datos presentados en las Figuras 4b y 5, se puede observar que aproximadamente
el 63 % de los estudiantes completan sus estudios al final de su tercer afio, mientras que el 27 % de los
estudiantes finalizan al final de su cuarto afio. Sin embargo, la realizaciéon del sistema no proporciona
informacién sobre el porcentaje de estudiantes que abandonan sus estudios. Asi pues, para conocer
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este porcentaje, en la Figura 6 se presenta la pmf de X* ~ DPH(&*,T)y X ~ DPH(&,T).

Comparacién de probabilidades
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Figura 6: pmf considerando un vector inicial normalizado y sin normalizar. Ela-
boracién propia.

En la gréfica de esta tltima variable se puede observar que alrededor del 31 % de los estudiantes no

se gradtian (porcentaje que se obtiene de 1 — 1) = 1 — 0.6905371), mientras que el 43 % completa sus
estudios en tres afios y el 19 % lo hace en cuatro afios.

4.2.2. Cadena de suministro

Supongamos que en cada mes k, la entidad S compra una cantidad u(k) de materia prima. Posterior-
mente, una fraccién 6; de la materia prima adquirida es descartada, mientras que otra fracciéon &; se
dirige al productor P. Al recibirla, el productor P procesa la materia prima, obteniendo un produc-
to del cual una fraccién &; se vende al minorista R, mientras que la fraccién restante d, se considera
inutilizable y se descarta. El minorista R interacttia con los clientes, vendiendo una fraccién ~y3 de los
productos recibidos del productor P, mientras que también experimenta devoluciones de productos
defectuosos, con una fraccién 3 siendo devueltos cada mes. Asi pues, el diagrama de flujo de este
modelo se puede ver como en la Figura 7.

T&lxl(k) Tagxz(k)
k), faalk) By y(k)
S P Bszs(k) |R Ys23(k)
z1 (k) zo (k) z3(k)

Figura 7: Diagrama de flujo del modelo de cadena de suministro. Elaboraciéon
propia con base en Bemporad (2010).
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El modelo matematico estd dado por:

z1(k+1) = (1 =& — d1)z1(k) + u(k)
zo(k +1) = &o1(k) + (1 — & — 02)w2(k) + Bzws(k) (12)
x3(k + 1) = oo (k) + (1 — B3y3)x3(k)
y(k) = v3z3(k)
donde
s k: Mes.

» z1(k): Materia prima en la entidad S al mes k.
» 25(k): Productos del productor P al mes k.
= z3(k): Productos del minorista R al mes k.

= y(k): Productos vendidos a los clientes al mes k.

Tomando los valores §; = 0.15, 2 = 0.08, {1 = 0.6, {2 = 0.8, B3 = 0.05, y3 = 0.8, y u(k) = 100, para
k =0,1,2,...,13; y siguiendo la misma metodologia que en la aplicacién anterior, se obtienen los
pardmetros DPH usando la ecuacién (9):

~ [0.25 0.00 0.00 0.75
a=1[0 0 072]; T=1{083 012 0.05|; i=] 0
0.00 0.85 0.15 0

Sia*=1[0 0 1]yX* ~ DPH(&", T), la interpretacién es como sigue: nos referiremos al estado
absorbente como “Cliente”, y X* medird el tiempo (en meses) que le toma al producto llegar al cliente.

La representacién DPH obtenida permite analizar de manera detallada la dindmica del producto den-
tro de la cadena de suministro. Cada fase del proceso representa una etapa de produccién o distribu-
ci6n, y la matriz T describe las probabilidades de transicién entre estas etapas, mientras que # indica
la probabilidad de que el producto avance hacia el estado absorbente, identificado como “Cliente”. La
variable aleatoria X * representa el tiempo que tarda un producto en llegar al cliente final. Esta infor-
macion es ttil para identificar posibles cuellos de botella en la cadena de suministro, estimar tiempos
de entrega y planificar inventarios. Ademads, permite simular distintos escenarios, como cambios en
las tasas de produccién o retrasos en el transporte, proporcionando una herramienta cuantitativa para
optimizar la logistica y mejorar la eficiencia del sistema.

Tomando una muestra aleatoria de X* de tamafio 1000, se obtiene una media de 3.855. M4s atin, de
su funcién pmf se obtiene que el 53 % de los productos llegan al cliente en 3 meses, 29 % en 4 meses,
12 % en 5 meses, 5 % en 6 meses, y 1 % en més de 7 meses.

Enla Figura 8a se presentan las realizaciones del sistema (12) y la variable aleatoria DPH. En la Figura
8b se presentan las probabilidades de las variables aleatorias DPH sin y con la probabilidad de que la
absorcién ocurra en el primer instante de tiempo que es 0.28. Esto quiere decir que aproximadamente
el 72 % de los productos se vende a los clientes, mientras que el restante 28 % no estd llegando a ellos
(por diversas cuestiones).
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Figura 8: Aplicacién de sistemas positivos y DPH a la cadena de suministro. Ela-
boracién propia.

5. Conclusiones

Estudiar o convertir un sistema positivo en una distribucién PH puede proporcionar una variedad
de beneficios, incluyendo la simplificaciéon del modelo, capacidades de modelado y prediccién, in-
terpretacion intuitiva, andlisis de rendimiento, facilitacién de aplicaciones interdisciplinarias, entre
muchos otros. Estas ventajas hacen que este enfoque sea valioso en una amplia gama de contextos de
investigacion y aplicaciones préacticas.

Este trabajo ha mostrado la compleja relacion entre los sistemas lineales positivos y las distribuciones
PH, tanto continuas como discretas. A través de nuestro andlisis, se ha mostrado la utilidad de las
distribuciones PH para capturar de manera efectiva el comportamiento estocéstico de la dindmica del
sistema, proporcionando informacién valiosa sobre sus caracteristicas probabilisticas.

Ademads, los resultados obtenidos subrayan la importancia de incorporar la incertidumbre inherente
en el modelado y anélisis de sistemas, especialmente en el contexto de sistemas dindmicos complejos.
Al aprovechar el robusto marco teérico que ofrecen las distribuciones PH, este trabajo avanza en la
comprension de la dindmica de dichos sistemas y sienta las bases para futuras investigaciones en esta
drea interdisciplinaria.

La integracién de modelos probabilisticos como las distribuciones PH en aplicaciones précticas tiene
el potencial de mejorar significativamente la confiabilidad, eficiencia y robustez de diversos sistemas
en dreas cientificas y de ingenieria. En conjunto, este estudio enriquece el discurso sobre modelado
y andlisis estocastico, ofreciendo nuevas perspectivas y oportunidades para explorar la dindmica de
sistemas complejos desde una visién innovadora y aplicada.

Aunque las distribuciones PH ofrecen una poderosa herramienta para modelar y analizar sistemas
positivos debido a su flexibilidad y raices en procesos de Markov, también presentan limitaciones
importantes. En particular, las distribuciones PH pueden volverse computacionalmente complejas a
medida que aumenta la dimensién del sistema, dificultando su aplicacién préctica en casos con un
gran namero de estados o variables. Ademads, existen situaciones donde otros enfoques podrian ser
maés apropiados, como métodos basados en procesos de Lévy o modelos no paramétricos, especial-
mente cuando se requiere captar dindmicas no markovianas o dependencias a largo plazo. Por altimo,
la necesidad de calibrar cuidadosamente los pardmetros para representar adecuadamente fenémenos
reales implica desafios metodolégicos que deben ser considerados. Reconocer estas limitaciones abre
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oportunidades para el desarrollo de metodologias hibridas o extensiones del marco PH que amplien
su aplicabilidad en futuros trabajos.
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