
Revista digital
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Abstract: This paper exemplifies the potential of GeoGebra as a didactic resource for teaching Real
and Complex Analysis. To be more precise, our main goal is to demonstrate how useful GeoGebra is
in providing a visual approach for understanding the concepts of continuity, equicontinuity, and the
convergence of sequences of real functions of two variables and complex functions of a single variable.
The complexity of the definition of these concepts, which rely on various parameters such as classical
delta and epsilon, motivated the choice of the subject of this article. Additionally, their connection to
the Ascoli-Arzelà Theorem, which is significant in many areas of mathematics, also influenced this
decision. Throughout the paper we present some applets developed using GeoGebra which allow a
satisfactory exploration of those concepts according to our analysis. This exploration is made along
a sequence of examples and counterexamples for the concepts of continuity, equicontinuity and con-
vergence addressed. In the Appendix, we provide some instructions for designing the applets used
along the text.
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Resumen: Este artı́culo ejemplifica el potencial deGeoGebra como recurso didáctico para la enseñanza
del Análisis Real y Complejo. Para sermás precisos, nuestro objetivo principal es demostrar lo útil que
es GeoGebra al proporcionar un enfoque visual para entender los conceptos de continuidad, equicon-
tinuidad y la convergencia de secuencias de funciones reales de dos variables y funciones complejas de
una variable. La complejidad de la definición de estos conceptos, que dependen de varios parámetros
como los clásicos delta y épsilon, motivó la elección del tema de este artı́culo. Además, su conexión
con el Teorema de Ascoli-Arzelà, que es significativo en muchas áreas de las matemáticas, también
influyó en esta decisión. A lo largo del artı́culo, presentamos algunos applets desarrollados con Ge-
oGebra que permiten una exploración satisfactoria de esos conceptos según nuestro análisis. Esta
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exploración se realiza a lo largo de una secuencia de ejemplos y contraejemplos para los conceptos
de continuidad, equicontinuidad y convergencia tratados. En el Apéndice, proporcionamos algunas
instrucciones para diseñar los applets utilizados a lo largo del texto.

Palabras Clave: GeoGebra, visualización, Análisis Real y Complejo, equicontinuidad.

1. Introduction

The presence of quantifiers andmultiple parameters found in the definitions of concepts related to the
continuity and convergence of sequences of functions are elements that complicate the assimilation
of these concepts by students (Boero 2015; Pinto 1998). In the case of sequences of functions, the
definitions of equicontinuity and uniform convergence, present in important theorems like theAscoli-
Arzelà Theorem, carry technical details like a fixed value ε, the index n of a function fn, the point
where the property is being analyzed, and a value δ (whichmay depend on the previous parameters).
The study of equicontinuity and uniform convergence of sequences of complex functions presents
another obstacle to learning: the high dimension of the graphs of the functions (Needham 2000).

The use of visual resources as an alternative to enhance learning in Mathematics, establishing a con-
nection between rigorous mathematical statements and intuitive notions, has been widely studied
(Martı́n-Caraballo and Tenorio-Villalón 2015; Martins et al. 2023; Yilmaz and Argun 2018), especially
on Real (Adhikari 2021; Costa and Alves 2024; Hanh et al. 2021; Hanifah and Istikomar 2023; Igliori
and Almeida 2018) and Complex Analysis (Alves 2014; Breda and Santos 2016; Valı́ková and Chal-
movianský 2015; Wegert 2016). The aim of this paper is to analyze the potential use of GeoGebra
software as a tool for the geometric visualization of the concepts addressed. For this purpose, we rely
on GeoGebra’s Slider tool, which is essential for visualizing the variation of parameters present in
the definitions of continuity and convergence concepts. We based our approach to GeoGebra on the
notion of generic organizer developed by Tall (1989): an environment (or microworld) which enables
the learner tomanipulate examples and (if possible) non-examples of a specificmathematical concept
or a related system of concepts.

The article is organized as follows: in Section 2, we discuss the importance of the Ascoli-Arzelà Theo-
rem and present two versions of this theorem, one for functions of two real variables and another for
complex functions; in Section 3, we present some definitions of continuity and convergence concepts
and a didactic sequence of examples and their respective visualizations using GeoGebra; in Section
4, we demonstrate that the equicontinuity of families of complex functions can be visualized through
the equicontinuity of the real and imaginary parts of these functions, and finally, we present an exam-
ple and its visualization in GeoGebra; Section 5 presents the conclusions on the developments made
in this article. In the Appendix, we provide detailed descriptions of the specific GeoGebra commands
and techniques used in the design of the applets presented throughout this text.

2. The Ascoli-Arzelà Theorem

The Ascoli-Arzelà Theorem is a fundamental tool in various areas of mathematics, including Real
Analysis, Ordinary Differential Equations (ODEs), and Complex Analysis (Kolmogorov and Fomin
1975). This theorem provides conditions under which a sequence of continuous functions has a uni-
formly convergent subsequence. The importance of this theorem lies in its ability to ensure the com-
pactness of sets of functions, which is essential for obtaining significant and practical results in these
areas.

In the theory of Ordinary Differential Equations, the Ascoli-Arzelà Theorem plays a central role in the
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study of the existence and uniqueness of solutions. For example, in the proof of the Cauchy-Peano
Existence Theorem (Coddington andLevinson 1955; Kolmogorov and Fomin 1975), which establishes
conditions for the existence and uniqueness of solutions to ODEs, it is used to show that the sequence
of Picard’s successive approximations converges uniformly to a function that is a solution to the ODE.

In Complex Analysis, the Ascoli-Arzelà Theorem is equally significant, especially in the context of
holomorphic functions. For instance, in the proof of Montel’s Theorem (Conway 1978), which states
that a family of holomorphic and uniformly bounded functions in a domain is normal (i.e., every
sequence has a subsequence that converges uniformly on compact sets), the Ascoli-Arzelà Theorem
is a fundamental component.

Observe that, unlike convergence phenomena, the conditions of uniform boundedness and equiconti-
nuity do not depend on the ordering of the functions fn. In this context, we distinguish the notations
{fn}n∈N and (fn)n∈N, where the latter considers the ordering of the functions fn while the first does
not. In this article, we consider the following versions of the Ascoli-Arzelà Theorem:

Theorem 1 (Two real variables)

Let K ⊂ R2 be a compact set and {fn}n∈N a family of functions fn : K → R. If {fn}n∈N is uni-
formly bounded and (uniformly) equicontinuous, then (fn)n∈N admits a uniformly convergent
subsequence.

Theorem 2 (Complex functions)

Let K ⊂ C be a compact set and {fn}n∈N a family of functions fn : K → C. If {fn}n∈N is uni-
formly bounded and (uniformly) equicontinuous, then (fn)n∈N admits a uniformly convergent
subsequence.

3. Visualization with GeoGebra

The importance of visualization in the study of real analysis has historically been underestimated due
to an excessive emphasis on rigorousmethods. However, visual thinking is valuable in Analysis when
it is pairedwith the appropriate ’epsilon-delta’ approach (Giaquinto 2007). In this section, we explore
a sequence of examples that provide visualizations of important concepts related to the Ascoli-Arzelà
Theorem, using GeoGebra applets, after recalling their definitions.

The concepts of continuity relate a neighborhood of a point in the domain of a function to a neigh-
borhood of the image of this point. Thus, to elaborate the visualization of continuity concepts, we
will observe the Cartesian product of these neighborhoods, obtaining a cylinder. Therefore, the con-
ditions involving the choice of an ε > 0will be translated into the choice of the height of the cylinder,
according to which we analyze the existence of an appropriate δ > 0, which is translated into the
existence of an appropriate radius for the circular base of this cylinder.

The visual representation of the parameters’ relationships (between ε and δ, for instance) by the cylin-
der cited above and the physical manipulation of them by using the Slider tool of GeoGebra are suit-
able examples of what led Tall to design his notion of generic organizer (Tall 2000).

3.1. Continuity of two-variable functions

From now on, we denote the 2-dimensional open ball centered at a point (x0, y0) ∈ R2 andwith radius
r as below

B2((x0, y0), r) = {(x, y) ∈ R2 : |(x, y)− (x0, y0)| < r}.
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Definition 1

Let A ⊂ R2, f : A → R a function, and (x0, y0) ∈ A. We say that f is continuous at (x0, y0) if, for
every ε > 0, there exists δ > 0 such that

(x, y) ∈ A, |(x, y)− (x0, y0)| < δ =⇒ |f(x, y)− f(x0, y0)| < ε. (1)

Todevelop a visualization forDefinition 1, let us consider the graph of the function f inR3 and observe
the following: for f to be continuous at the point (x0, y0), given ε > 0, it must be possible to obtain a
circle centered at (x0, y0)with radius δ > 0 such that f(x, y) lies between f(x0, y0)−ε and f(x0, y0)+ε
for all (x, y) within that circle. Thus, the continuity of f is confirmed by observing the possibility of
obtaining a cylinder

B2((x0, y0), δ)× [f(x0, y0)− ε, f(x0, y0) + ε]

such that the points on the graph of f overB2((x0, y0), δ) lie inside this cylinder. Note that if the graph
of the function is connected, the previous condition translates to checking whether the graph of the
function intersects the cylinder at points that are not on its bases (bottom and top). For visualizing
these conditions, we propose the following example:

Example 1

The function f : R2 → R given by

f(x, y) =

{
x2, x < 1

x+ 1, x ≥ 1

is not continuous at points of the form (1, y). As we can see in Fig. 1, for ε values less than 1,
such as ε = 1

2 shown in Fig. 1, the condition (1) of continuity is not satisfied, since there are
points on the graph of f over the ball B2((1, 0), δ) but not inside the cylinder, regardless of the
value of δ.

Figure 1: Discontinuity at points (1, y). Created by the authors.

We constructed a dynamic visualization of the situation in Example 1 and made it available at the
link: https://www.geogebra.org/m/sywppdzb.

Using the Sliders to vary the values of δ and ε, we easily conclude that there are points of the graph
of f over B2((x1, 0), δ)× [2− ε, 2 + ε] but outside the cylinder B2((x1, 0), δ)× [2− ε, 2 + ε].

https://revistas.tec.ac.cr/index.php/matematica
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3.2. Pointwise and uniform equicontinuity

Definition 2

Let A ⊂ R2, {fn}n∈N a family of functions fn : A → R, and (x0, y0) ∈ A. The family {fn} is
equicontinuous at (x0, y0) if, for every ε > 0, there exists δ > 0 such that

(x, y) ∈ A, |(x, y)− (x0, y0)| < δ =⇒ |fn(x, y)− fn(x0, y0)| < ε, ∀n ∈ N. (2)

If {fn}n∈N is equicontinuous at every point (x, y) of the domain A, we simply say that {fn}n∈N
is equicontinuous.

The equicontinuity of {fn}n∈N at (x0, y0) implies that each function fn is continuous at (x0, y0). The
distinctive aspect that the condition of equicontinuity at (x0, y0) brings is that, for a fixed value of ε,
the same δ satisfies the condition (1) of continuity for all functions in the family {fn}n∈N.

To visualize the pointwise equicontinuity of {fn}n∈N, we observe the following: for {fn}n∈N to be
equicontinuous at (x0, y0), given ε > 0, it must be possible to obtain a circle centered at (x0, y0) with
radius δ > 0 such that fn(x, y) lies between f(x0, y0)−ε and f(x0, y0)+ε, for all (x, y) ∈ Awithin that
circle and for all n ∈ N. Thus, the equicontinuity of {fn}n∈N is confirmed by observing the possibility
of obtaining cylinders

B2((x0, y0), δ)× [fn(x0, y0)− ε, fn(x0, y0) + ε]

such that the points on the graph of fn over B2((x0, y0), δ) lie inside this cylinder, for all n ∈ N. To
visualize the above conditions, we initially propose an example where condition (2) of pointwise
equicontinuity is not satisfied.

Example 2

The family {fn}n∈N of functions fn : R2 → R given by fn(x, y) = xn is not equicontinuous at
(1, 0). Given ε > 0, for each n ∈ N, the largest value of δ satisfying the continuity condition
is δ = n

√
ε+ 1 − 1. However, since the sequence ( n

√
ε+ 1 − 1)n∈N has limit zero, we conclude

that it is not possible to obtain a positive value of δ satisfying the condition (2) of pointwise
equicontinuity (see Fig. 2).

Figure 2: Decrease in the value of δ with the variation of ε. Created by the authors.
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We constructed a dynamic visualization of the situation in Example 2 and made it available at the
link: https://www.geogebra.org/m/ssjwby4s.

The fact that n
√
ε+ 1−1 is the highest value of δ satisfying the continuity condition for fn is visualized

as we see the graph of fn on the verge of touching the top of the cylinder. Moving the Slider to higher
values of n, we observe that the radius of the cylinder tends to zero meaning that we cannot obtain a
cylinder satisfying the equicontinuity condition (2) as in Definition 2. The visualization of these facts
can be improved by observing the trace of the circle B2((1, 0), δ) which is accessed by clicking with
the right mouse button on the circle.

Example 3

The family {fn}n∈N of functions fn : R2 → R given by fn(x, y) = x2 + 1
n is equicontinuous (at

all points in R2). Given ε > 0, for each n ∈ N, the largest value of δ satisfying the continuity
condition for fn at (x0, y0) is δ =

√
ε+ x20 − |x0|. Since this value for δ does not depend on n,

it satisfies the condition (2) of equicontinuity presented in Definition 2. This means that the
dimensions of the cylinder associated with the continuity of the functions fn does not change
when the value of n varies (see Fig. 3).

Figure 3: Equicontinuity of {fn}n∈N at (1, 0). Created by the authors.

We constructed a dynamic visualization of the situation in Example 3 and made it available at the
link: https://www.geogebra.org/m/xbnrzbmp.

The fact that δ =
√
ε+ r2 − |r| is the highest value of δ satisfying the continuity condition for fn is

visualized as we see the graph of fn on the verge of touching the top of the cylinder.

Moving the Slider to higher values of n, we observe that the dimensions of the cylinder do not change
and hence we conclude that the family {fn}n∈N is equicontinuous at each point (r, r). However, mov-
ing the Slider for the value of r to higher valueswe observe that the dimensions of the cylinder change.
This motivates the next definition.

Definition 3

Let A ⊂ R2, and {fn}n∈N a family of functions fn : A → R. The family {fn}n∈N is uniformly
equicontinuous if, for every ε > 0, there exists δ > 0 such that whenever (x, y) ∈ Awe have

|(x, y)− (x0, y0)| < δ =⇒ |fn(x, y)− fn(x0, y0)| < ε, ∀n ∈ N, ∀(x0, y0) ∈ A. (3)
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To visualize the uniform equicontinuity of {fn}n∈N, we observe the following: for {fn}n∈N to be uni-
formly equicontinuous, given ε > 0, it must be possible to obtain a radius δ > 0 for the circles centered
at the points (x0, y0) ∈ A such that fn(x, y) lies between fn(x0, y0)− ε and fn(x0, y0) + ε, for all (x, y)
within that circle and all n ∈ N. Thus, the uniform equicontinuity of {fn}n∈N is confirmed by observ-
ing the possibility of obtaining cylinders B2((x0, y0), δ)× [fn(x0, y0)− ε, fn(x0, y0) + ε] such that the
points on the graph of fn over B2((x0, y0), δ) lie inside this cylinder, for all (x0, y0) ∈ A and all n ∈ N.
This means that the dimensions of the cylinder should not change as (x0, y0) and n vary.

The family of functions studied in Example 3 is not uniformly equicontinuous as we can observe that
the radius of the base of the cylinder tends to zero as the Slider for the value of is moved towards
higher values (see Fig. 4).

Figure 4: Decrease of δ as x0 increases.

The restriction of the domain of an equicontinuous family of functions to a compact subset defines a
uniformly equicontinuous family of functions. Indeed, Kumaresan (2005) shows that:

Theorem 3

Let X be a compact metric space and F be a family of equicontinuous functions from X to
another metric space Y . Then F is a uniformly equicontinuous family.

In the context of Theorem 3, we present the following example.

Example 4

The family {fn}n∈N of functions fn : [−1, 1]× [−1, 1] → R given by

fn(x, y) = x3 +
1

n

is uniformly equicontinuous. Given ε > 0, the choice δ = ε
3 satisfies the continuity condition for

all (x0, y0) ∈ [−1, 1]× [−1, 1] and all n ∈ N. The points of the graph of fn which are over [−1, 1]×
[−1, 1] ∩ B2((x0, y0), δ) lie inside the cylinder B2((x0, y0), δ)× [fn(x0, y0)− ε, fn(x0, y0) + ε] for
(see Fig. 5).

We constructed a dynamic visualization of the situation in Example 4 and made it available at the
link: https://www.geogebra.org/m/kxht6mnz.

Moving the Sliders for the values of n and rwemay visualize the fact that the cylinderB2((x0, y0), δ)×

https://www.geogebra.org/m/kxht6mnz
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Figure 5: Uniform equicontinuity of {fn}n∈N. Created by the authors.

[fn(x0, y0)− ε, fn(x0, y0) + ε] with radius δ = ε
3 contains all the points of the graph of fn which are

over B2((x0, y0), δ) and hence, the family {fn}n∈N is uniformly equicontinuous.

3.3. Pointwise and uniform convergence

Definition 4

Let A ⊂ R2 and (fn)n∈N a sequence of functions fn : A → R. We say that (fn)n∈N con-
verges pointwise to a function f : A → R if, for each (x0, y0) ∈ A, the numerical sequence
(fn(x0, y0))n∈N converges to f(x0, y0). In other words, given ε > 0, for each (x0, y0) there exists
n0 ∈ N such that

n ≥ n0 =⇒ |fn(x0, y0)− f(x0, y0)| < ε. (4)

Observe that, in the definition of pointwise convergence, there is no requirement that the same n0 sat-
isfies the condition (4) of pointwise convergence for all (x0, y0) ∈ A, unlike the definition of uniform
convergence presented below.

Definition 5

LetA ⊂ R2 and (fn)n∈N be a sequence of functions fn : A → R. We say that (fn)n ∈ N converges
uniformly to a function f : A → R if, for every ε > 0, there exists n0 ∈ N such that

n ≥ n0 =⇒ |fn(x0, y0)− f(x0, y0)| < ε, ∀(x0, y0) ∈ A. (5)

To create a visual approach for the definition of uniform convergence, we consider the graph of the
function f in R3 and, for each given ε > 0, consider the following set:

R(f, ε) = {(x, y, z) ∈ R3 : (x, y) ∈ A, f(x, y)− ε < z < f(x, y) + ε}.

The setR(f, ε) is the union of vertical segments centered at points of the graph of f with radius ε. For
(fn)n∈N to converge uniformly to f , there must exist n0 ∈ N such that the graph of fn lies within the
set R(f, ε) for all n ≤ n0.

https://revistas.tec.ac.cr/index.php/matematica
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Example 5

The sequence (fn)n∈N of functions fn : [0, 1] × [0, 1] → R given by fn(x, y) = xn converges
pointwise to the function f : [0, 1]× [0, 1] → R given by

f(x, y) =

{
0, x < 1

1, x = 1,

but does not converge uniformly. In fact, whenever 0 < ε < 1, there will exist n ∈ N for which
the graph of fn is not completely inside of R(f, ε) (see Fig. 6).

Figure 6: Non-uniform convergence of (fn)n∈N to f . Created by the authors.

We constructed a dynamic visualization of the situation in Example 5 and made it available at the
link: https://www.geogebra.org/m/e48kdzse.

It is easily observed, with the support of the Slider of ε, that whenever 0 < ε < 1, there will exist
n ∈ N such that the graph of fn has points outside R(f, ε) and hence we conclude that (fn)n∈N does
not converge uniformly to f . However, with the support of the Slider of n, we observe that, for a fixed
point (x0, y0), the point (x0, y0, fn(x0, y0)) of the graph of fn lies inside R(f, ε) whenever n is large
enough meaning that (fn)n∈N converges pointwise to f .

4. Equicontinuity in the case of Complex Functions

Since the set C can be geometrically seen as R2, visualizing some properties of complex functions can
become challenging because the graph of these functions lies in C2, which has real dimension 4. A
valid alternative to remedy this difficulty is to consider separately the real and imaginary parts of the
complex function, which can be viewed as real functions of two variables, as those considered in the
previous section.

To take advantage of the visualization techniques developed in the previous section, it is important
to clarify the relationship between the equicontinuity of a family {fn}n∈N of complex functions fn =
an+i ·bn and the equicontinuity of the families {an}n∈N and {bn}n∈N of real functions of two variables
and defined by the real and imaginary parts of the complex functions fn. We present a proof of the
following theorem since we have not found any reference for this.

https://www.geogebra.org/m/e48kdzse
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Theorem 4

Let A ⊂ C and {fn}n∈N be a family of functions fn : A → C given by fn = an + i · bn where an
and bn are real functions defined on A. Then {fn}n∈N is equicontinuous at a point (x0, y0) ∈ A
if and only if {an}n∈N and {bn}n∈N are equicontinuous at (x0, y0).

Proof. Suppose that {fn}n∈N is equicontinuous at (x0, y0). Then, given ε > 0, there exists δ > 0 such
that, whenever (x, y) ∈ A, we have

|(x, y)− (x0, y0)| < δ =⇒ |fn(x, y)− fn(x0, y0)| < ε, ∀n ∈ N.

Since |an(x, y)− an(x0, y0)|, |bn(x, y)− bn(x0, y0)| ≤ |fn(x, y)− fn(x0, y0)|, it follows that

|(x, y)− (x0, y0)| < δ =⇒

{
|an(x, y)− bn(x0, y0)| < ε, ∀n ∈ N
|bn(x, y)− bn(x0, y0)| < ε, ∀n ∈ N

and therefore, {an}n∈N and {bn}n∈N are equicontinuous at (x0, y0).

Conversely, suppose that {an}n∈N and {bn}n∈N are equicontinuous at (x0, y0). Then, given ε > 0, there
exist δ1, δ2 > 0 such that, whenever (x, y) ∈ A, we have

|(x, y)− (x0, y0)| < δ1 =⇒ |an(x, y)− bn(x0, y0)| <
ε

2
, ∀n ∈ N,

|(x, y)− (x0, y0)| < δ2 =⇒ |bn(x, y)− bn(x0, y0)| <
ε

2
, ∀n ∈ N.

Let δ = min{δ1, δ2}. Since

|fn(x, y)− fn(x0, y0)| ≤ |an(x, y)− an(x0, y0)|+ |bn(x, y)− bn(x0, y0)|,

it follows that
|(x, y)− (x0, y0)| < δ =⇒ |fn(x, y)− fn(x0, y0)| <

ε

2
+

ε

2
= ε.

Therefore, {fn}n∈N is equicontinuous.

Note that the same arguments used in the proof of Theorem 4 prove the same property for uniform
equicontinuity.

Although it is not possible to visualize the equicontinuity of the family {fn}n∈N since the graph of
these functions lies in R4, we can visualize the equicontinuity of the families {an}n∈N and {bn}n∈N of
the real and imaginary parts of the functions fn, which characterizes the equicontinuity of {fn}n∈N
according to Theorem 4.

Example 6

The family {fn}n∈N of complex functions fn : A → C defined by

fn(z) = z2 +
1

n

on the compact set
A = {z = x+ i · y ∈ C : x, y ∈ [0, 1]}

is uniformly equicontinuous. Note that fn = an + i · bn where

an(x, y) = x2 + y2 +
1

n
and bn(x, y) = 2xy.

https://revistas.tec.ac.cr/index.php/matematica
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Given ε > 0, δ = ε
4 satisfies condition (3) of uniform equicontinuity for both {an}n∈N and

{bn}n∈N. The points of the graph of an which are over [0, 1] × [0, 1] ∩ B2((x0, y0), δ) lie inside
the cylinder B2((x0, y0), δ) × [an(x0, y0) − ε, an(x0, y0) + ε] (see Fig. 7), and the points of the
graph of bn which are over [0, 1]× [0, 1] ∩B2((x0, y0), δ) lie inside the cylinder B2((x0, y0), δ)×
[bn(x0, y0)− ε, bn(x0, y0) + ε] (see Fig. 8).

Figure 7: Uniform equicontinuity of the real part {an}n∈N of {fn}n∈N. Created by the authors.

Figure 8: Uniform equicontinuity of the imaginary part {bn}n∈N of {fn}n∈N. Created by the authors.

We constructed a dynamic visualization of the situation of the families {an}n∈N and {bn}n∈N in Ex-
ample 6 and made it available respectively at the links: https://www.geogebra.org/m/axvzddsd and
https://www.geogebra.org/m/ezve8mcj.

The analysis with the applets for real and imaginary parts for Example 6 are analogous to the de-
scribed for Example 4, so we will not repeat them here.

5. Conclusions

We analyzed the potential use of GeoGebra software as a tool to provide visualization of the concepts
addressed. Our methodology was based on the geometric significance of the choice and existence

https://www.geogebra.org/m/axvzddsd
https://www.geogebra.org/m/ezve8mcj
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of the values of ε and δ present in the definitions of equicontinuity and convergence. At this point,
GeoGebra’s Slider tool was essential for providing a visualization of the variation of the parameters.

Initially, we worked within the context of real functions of two variables. Supported by Theorem
4, we presented the possibility of applying the developed technique of visualization to the case of
complex functions. This was achieved by separately observing the real and imaginary parts of these
functions. This shows an example of how theoretical results in mathematics can be applied to the
teaching context.

The examples and counterexamples presented were chosen to validate the proposal for visualizing
the addressed concepts. This approach allows a visualization of what occurs when the conditions of
continuity, equicontinuity, uniform equicontinuity, and uniform convergence are not satisfied.

We conclude that GeoGebra has the potential to be adopted as a didactic resource for teaching con-
tent, even with considerable levels of abstraction. When well used, it presents satisfactory results in
shortening the path between visual perception and theoretical understanding.

A. Appendix: Notes on the design of GeoGebra applets

In this appendix, we provide detailed descriptions of the specific GeoGebra commands and tech-
niques used in the design of the applets presented throughout this text. Below, we outline the steps
and commands used to create each applet, ensuring that the readers can replicate and explore these
visualizations on their own using GeoGebra.

Applet used in Example 1

The first standard proceeding to build the GeoGebra applet for this visualization consists of plotting
the graph of the function and the point P = (1, 0, 0) to represent the point (1, 0) in the xy-plane. The
software was not able to plot the graph of f satisfactorily via the command f(x,y)=If(x<1,xˆ2,x+1)
since it somehow connected the two connected components of the graph of f (disconnected blue
pieces of graph in Fig. 1). Then we build the components of the graph of f separately with the
commands f 1(x,y)=If(x>=1,x+1) and f 2(x,y)=If(x<1,xˆ2). Since f(1, 0) = 2, we define the points
A = (1, 0, 2+ε) andB = (1, 0, 2−ε) automatically creating the Slider for the value of ε. After that, we
build the circle B2((1, 0), δ) inserting the command Circle(P,δ,xOyPlane) which will also create the
Slider for the value of δ , and the cylinder B2((x1, 0), δ)× [2− ε, 2 + ε] by inserting Cylinder(A,B,δ).

Applet used in Example 2

To build this applet we first insert f n(x,y)=xˆn that creates a Slider for the value of n together with
the graph of fn for the respective value of n controlled by the Slider tool. The variation of the graph
while the Slider is moved gives a satisfactory perception of the sequence (fn)n∈N. Then we plot four
points: the point P = (1, 0, 0) to represent the point (1, 0) in the xy-plane, the pointQ = (1, 0, 1) since
fn(1, 0) = 1 for all n ∈ N and the points A = (1, 0, 1 + ε) and B = (1, 0, 1 − ε) which will be used
to determine the height of the cylinder. Before we start to build the cylinder to analyze the condition
of equicontinuity, we need to define the value of δ by inserting δ =(ε+1)ˆ(1/n)-1 in the input box.
Note that the value of δ also varies when the Slider for the value of n is moved. Finally, we insert
Circle(P,δ,xOyPlane) and Cylinder(A,B,δ) plotting the circle B2((1, 0), δ) in the xy-plane and the
cylinder B2((1, 0), δ)× [1− ε, 1 + ε].

https://revistas.tec.ac.cr/index.php/matematica
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Applet used in Example 3

To build this applet we insert f n(x,y)=xˆ2+1/n that creates a Slider for the value of n together with
the graph of fn for the respective value of n controlled by the Slider tool. In order to analyze the points
in the diagonal of the odd quadrants, we first define the point P = (r, r, 0) to represent the point (r)
in the xy-plane. This automatically creates a Slider for the value of r which provides a dynamic
way to analyze the points in the chosen diagonal by moving the Slider. Then we plot the point Q =
(r, r, fn(r, r)) to represent the visualization of the image of (r, r), and the points A = (r, r, fn(r, r)+ ε)
and B = (r, r, fn(r, r) − ε) which will be used to determine the height of the cylinder. Note that all
these points move as the Slider for the value of r. After that, we define the value of δ by inserting
δ=sqrt(ε+rˆ2)-|r| in the input box. Note that the value of δ does not change when the Slider for the
value of n is moved. Finally, we use Circle(P,δ,xOyPlane) and Cylinder(A,B,δ) to plot the circle
B2((r, r), δ) in the xy-plane and the cylinder B2((r, r), δ)× [fn(r, r)− ε, fn(r, r) + ε].

Applet used in Example 4

The preparation of this applet essentially follows the same procedure as the previous one except for
a couple details that we highlight here. To plot the family of functions fn, we type the command
f n(x,y)=Function in the input box and then we choose the option Function(Expression, Parameter
Variable 1, Start Value, End Value, Parameter Variable 2, Start Value, End Value) and fill the fields
with the data (xˆ3+0y+1/n,x,-1,1,y,-1,1) in order to establish the domain [−1, 1] × [−1, 1]. We warn
that the variable y should appear in the field Expression, otherwise the software will not work, this
is the reason why we typed xˆ3+0y+1/n instead of just xˆ3+1/n in the field Expression. Moreover,
we defined the point P = (r, 0) instead of (r, r). This choice does not affect the analyzes since the
functions fn essentially depend only on the variable x.

Applet used in Examples 5 and 6

To build the applet used in Example 5weplot the family of functions fn similarly as previous examples
using the command f n(x,y)=Function(xˆn+0y,x,0,1,y,0,1)which also creates the Slider for the value
of n. The graph of the function f consists of the union of two disconnected pieces (components): the
rectangle C1 = [0, 1) × [0, 1] × {0} and the segment C2 = {1} × [0, 1] × {1}. We warn again that the
software used to have problems plotting graphs with more than one connected component. To plot
C1 we used Function(0x+0y,0,1,0,1) which plots [0, 1] × [0, 1] × {0} that differs from C1 only by the
null measure set {1} × [0, 1]× {0} (which does not affect the visualization). To plot the segment C2,
we use the command g=Segment((1,0,1),(1,1,1)). The desired setR(f, ε) consists of the union of the
blockB1 = [0, 1)× [0, 1]× (0−ε, )+ε), since f(x, y) = 0 for any (x, y) ∈ [0, 1)× [0, 1], and the rectangle
B2 = {1} × [0, 1] × (1 − ε, 1 + ε), since f(x, y) = 1 for any (x, y) ∈ {1} × [0, 1]. To plot B1, we first
define the points A = (0, 0,−ε), B = (1, 0,−ε), C = (1, 1,−ε) and D = (0, 0,−ε) together with the
Slider for the value of ε. Then we use q1=Polygon(A,B,C,D) to define what will be the basis of the
block B1 and hence we use e=Prism(q1,2ε) to plot a prism with basis q1 and height 2ε obtaining the
visualization of B1. Finally, to plot B2 we first define the points A1 = (1, 0, 1 − ε), A2 = (0, 0, 1 + ε),
A3 = (1, 1, 1+ε) andA4 = (1, 1, 1−ε) and thenwe use the command q2=Polygon(A 1,A 2,A 3,A 4).

The construction procedure for the applets presented in Example 6 is analogous to the described for
Example 4, so we will not repeat them here.
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