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Abstract

Detailed knowledge of teak stand structure is necessary for sustainable management plans. The integration of remote sensing variables with geostatistical modeling in teak forest stands has not been sufficiently studied and, therefore, the aim was to model the spatial distribution of teak stand variables, adding covariables. The study was carried out on 19-year-old teak stand in Brazil with 213 hectares in the initial spatial of 3 m x 3 m. Geo-referenced plots of 900 m² were allocated, and forest variables were obtained after thinning. Vegetation indices were calculated from arithmetic operations conducted between the Landsat image bands. The interpolation of forest variables was performed by the geostatistical univariate method of ordinary kriging, as well as by the multivariate method of kriging with external drift, considering the remote sensing variables as covariables. Statistical analysis of remote sensing variables shows a weak linear correlation with teak variables, which tends to make them unviable to use as covariables in geostatistical modeling. However, kriging with external drift predicts spatial patterns of forest variables with greater detail, which results in lower possible smoothing errors than those obtained by ordinary kriging and provides more accurate recommendations for localized management in teak stand. The integration of remote sensing variables in forest inventory through geostatistics is advantageous for mapping the spatial distribution of teak stand variables.
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El conocimiento detallado de la estructura de las diseases, therefore, it is widely used in luxury furniture plantaciones de teca es necesario para los planes and shipbuilding [6]. Thus, teak is an alternative to native de gestión sostenible. La integración de variables de forest species of high economic value, providing a teledetección con la modelización geoestadística en sustainable option for the Brazilian forest-based industry plantaciones de teca ha sido poco estudiada y, por tanto, el and reducing the pressure to exploit tropical rainforests objetivo consistía en modelizar la distribución espacial de

[7], [8].

las variables del rodal de teca, incorporando covariables.

El estudio se realizó en plantaciones de teca de 19 años Detailed knowledge of teak stand structure is necessary en Brasil con 213 hectáreas en el espacio inicial de 3 m for sustainable management plans. Thus, it is important x 3 m. Se asignaron parcelas georreferenciadas de 900

to consider the spatial relationships of forest variables m² y se obtuvieron las variables forestales después del in a precision forestry context [9],  [10]. Geostatistics clareo. Los índices de vegetación se calcularon a partir is a technique based on the theory of regionalized de operaciones aritméticas ejecutadas entre las bandas variables[11] that provides analysis of the spatial de imágenes Landsat. La interpolación de las variables distribution of variables and estimation at unsampled forestales se procedió por el método geoestadístico locations for thematic maps [12], [13].

univariante de kriging ordinario, así como por el método Geostatistics has been applied to manage teak stands multivariante de kriging con deriva externa, considerando

[14],  [15], since they require a particular management las variables de teledetección como covariables. El regime of the main forest species, such as Eucalyptus análisis estadístico de las variables de teledetección and Pinus genera. Additionally, covariables can be used muestra una discreta correlación lineal con las variables to increase the accuracy at the spatial level [16],  [17].

de la teca, lo que tiende a hacer inviable su uso como Remote sensing variables can assist in geostatistical covariables en la modelización geoestadística. Sin modeling  [18] due to their low acquisition cost and embargo, el kriging con deriva externa predice los the correlation between reflectance values and forest patrones espaciales de las variables forestales con variables [19], [20].

mayor detalle, lo que da como resultado a posibles errores de suavización menores que los obtenidos por el This evidence is based on information obtained by kriging ordinario, y proporciona recomendaciones más different remote sensing technologies, which have shown precisas para la gestión localizada en plantaciones de wide application for forest cover representation, forest teca. La integración de variables de teledetección en el structure mapping, improving the accuracy in forest inventario forestal mediante geoestadística es ventajosa estimates, and supporting forest operations [21],  [22].

para cartografiar la distribución espacial de las variables However, the integration of remote sensing variables, de los rodales de teca.

such as vegetation indices, with geostatistical modeling in forest stands has not been sufficiently studied

[16],  [23],  [24]. For teak plantations, this gap remains unexplored and, therefore, the aim of this study was to model the spatial distribution of teak stand variables, Palabras clave: Kriging con deriva externa, índices de adding covariables.

vegetación, teca.

Material and methods

Study area 

Introduction

The study was carried out in 19-year-old teak stand in Mato Grosso State, Brazil, with 213 hectares in the initial Tectona grandis L. f., popularly known as teak, is a species spatial of 3 m x 3 m. The region's climate is tropical Aw from the monsoon rainforest in the Asian continent, with (Köppen), with a dry season in the winter, an average natural distribution in India, Myanmar, Thailand, and Laos rainfall of 1,300 mm year-1, and an annual average

[1], [2]. Commercial teak plantations were introduced in temperature of 25 ºC [25]. Selective thinning was carried Brazil to ensure wood availability for regional industry [3].

out at six, nine, twelve, fourteen, seventeen, and nineteen Teak log production represents 0,4% of the total wood years old, with an average removal of 35  of the initial produced in Brazil, with an average annual productivity of planting, and 17 , 11 , 5 , 9 , 3  of the total remaining trees, 15 m³ ha-1 [4]. Currently, there are 94 thousand hectares respectively. Pruning was performed in the second, third, of commercial teak plantations [5] located in the Midwest and fourth years.

and North regions.

For data collection, 46 geo-referenced plots of 900 m²

Teak is a fast-growing species, whose wood is considered (30 m x 30 m) were allocated. In these plots, variables noble for its durability, it is resistant to fire, pests, and were obtained after thinning: V - stand volume (m3 ha-1), 72
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Revista Forestal Mesoamericana Kurú (Julio-Diciembre, 2022) 19 (45) G - basal area (m² ha-1), d - arithmetic mean of diameters external drift, considering the remote sensing variables at breast height (cm), d  - quadratic mean diameter (cm), as covariables.

g

d

- dominant diameter (cm); h - arithmetic mean of the dom

heights (m); and h

- dominant height (m).

dom

Ordinary kriging

In ordinary kriging (1), the estimate at the unsampled Remotely sensed data and imagery processing point results from a combination of values found in the Landsat 8 Operation Land Imager image was acquired, close neighborhood [31] whose average is unknown.

in march 2018, on the Earth Explorer portal of the United In this method, weights (λ ) are influenced by the fitted i

States Geological Survey [26]. The image was reprojected semivariogram, considering the distances between the to Universal Transverse Mercator, Datum SIRGAS 2000

sampling points Z(x ) and the point to be estimated           .

i

- Spindle 21 South, and an atmospheric correction was Thus, higher weights are assigned to the nearest applied in QGIS software [27]. The fusion of multispectral points, which minimizes the grouping effects or data bands with panchromatic was performed to obtain a redundancy [34].

higher spatial resolution image.

Vegetation indices were calculated from arithmetic (1)

operations carried out between the image bands: Simple Ratio (SR), Normalized Difference Vegetation Index (NDVI), Enhanced Vegetation Index (EVI), Soil Adjusted Kriging with external drift

Vegetation Index (SAVI), Atmospherically Resistant Kriging with external drift (2), or universal kriging, is a Vegetation Index (ARVI), Visible Atmospherically method that allows estimating a variable considering the Resistant Index (VARI), and Leaf Area Index (LAI) [28].

information of a covariable known throughout the area In addition, Principal Component Analysis (PCA) and

[35]. Thus, considering Z  (x) as the primary variable and 1

Tasseled Cap Transformation were performed. The first Z  (x) as the covariable, this correlation can be described 2

one aims to produce uncorrelated principal components through a linear relationship. This indicates that the (PC), while the second one results in an orthogonal spatial variability of the secondary variable Z  (x) is 2

transformation of the sensor bands that redesigns the related to local trends Z  (x).

1

data in three axes: Brightness, Greenness, and Wetness

[29], [30].

(2)

Geostatistical analysis

Exploratory analysis was applied to verify the relationship The kriging methods estimates were compared by between forest and remote sensing variables and the leaving-one-out cross-validation [36] using the gstat presence of outliers. These analyses consisted of the package  [32]. BIAS, mean absolute error (MAE), mean Anderson-Darling’s test for data normality at a 95%

percentage error (MPE), absolute root mean squared probability level, linear correlation analysis, and frequency error (RMSE), percentage root mean squared error histograms to identify positive-skew distributions, which (RMSE%), and Pearson’s linear correlation between can hinder geostatistical modeling due to the weight observed and estimated values        were also applied.

of few observations in the estimation at unsampled locations [31].

Semivariances were calculated to identify the Results and discussion

spatial dependence of the sampling units. Spherical, Exponential, Gaussian, Pentaspheric, and Circular Exploratory analysis of teak stand and remote semivariogram models were fitted by the gstat package sensing variables

[32] of R software [33] to describe the spatial dependence The low variability of forest variables (Table 1) is indicative structure. The semivariograms were determined in of data homogeneity, which may be the result of thinning four spatial directions, 0º, 45º, 90º, and 135º, to verify applied in teak stand. Thinning tends to change the anisotropy. If detected, the angle was adjusted to obtain forest structure, especially selective ones, by removing a semivariogram model with common parameters in all trees with smaller sizes and phytosanitary and quality directions  [31]. The best fit was selected based on the problems, such as stem tortuosity and bifurcation smallest weighted sum of squared deviations (WSSD)

[37],  [38]. Remote sensing variables with the highest and highest coefficient of determination (R²).

coefficient of variation (cv%) values (e.g., PC = 43.5 ) The interpolation of forest variables was carried out by were more influenced by variations in vegetation cover of the geostatistical univariate method of ordinary kriging, the study area, while the variables with lower values (e.g., as well as by the multivariate method of kriging with VARI = 15.5 ) were less affected.
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Cuadro 1. Análisis estadístico descriptivo de las variables forestales y de teledetección.

Variable

Minimum

Average

Maximum

Standard Deviation

cv%

Anderson-Darling

V (m3 ha-1)

162.00

394.29

536.64

81.66

20.7

1.33*

G (m2 ha-1)

21.35

39.93

50.66

6.11

15.3

1.37*

d (cm)

26.49

33.10

38.29

2.78

8.4

0.63ns

d  (cm)

26.23

34.80

41.62

3.26

9.4

0.45ns

g

d

(cm)

32.95

39.59

48.46

3.62

9.2

0.15ns

dom

h (m)

19.60

25.75

29.10

2.39

9.3

2.60*

h

(m)

20.84

27.73

31.78

2.40

8.7

0.79*

dom

SR

0.00

2.18

5.70

0.52

23.9

24.73*

NDVI

-1.00

0.35

0.70

0.13

36.4

258.55*

EVI

-0.47

0.28

0.69

0.11

39.0

70.07*

SAVI

-1.48

0.52

1.04

0.19

36.4

256.64*

ARVI

-1.00

0.66

1.43

0.21

31.6

192.19*

VARI

-0.10

0.79

1.29

0.12

15.5

144.50*

IAF

-1.28

0.83

2.23

0.32

38.6

73.66*

PC

13

61.76

336

26.84

43.5

975.57*

Brightness

12.72

56.48

303.16

23.94

42.4

970.32*

Greenness

-95.35

-2.72

13.69

6.16

-226.2

844.42*

Wetness

-67.81

-3.32

10.19

6.16

-185.5

491.70*

ns normal distribution according to Anderson-Darling’s test (pvalue > 0.05), and * non-normal distribution (pvalue ≤ 0.05).

Data normality was verified for variables arithmetic mean successive thinning to trees with greater dominance.

of diameters at breast height (d), quadratic mean diameter The tendency of bimodal distributions for these variables (d ), and dominant diameter (d

) through Anderson-

can indicate two site classes with different productivity.

g

dom

Darling’s test (Table 1). The absence of normality was Additionally, data dispersion and correlations showed observed for remote sensing variables at a 95  probability linear dependence between the forest variables. Also, a level. Log-transformation was applied for forest variables, higher correlation between volume (V) and basal area (G) aiming to reduce the asymmetry of their distributions showed the influence of diameter in the quadratic form to

[39]. However, it was not possible to transform remote determine the volume [41], [42].

sensing variables since some vegetation indices showed negative values.

Evaluating the scatterplots of remote sensing variables (Figure 2), unimodal distributions with asymmetry were The negative-skew distributions were observed for observed for Simple Ratio (SR), Normalized Difference variables volume (V) and basal area (G), in which the Vegetation Index (NDVI), Enhanced Vegetation highest frequency class (mode) has moved to the right Index (EVI), Soil Adjusted Vegetation Index (SAVI), of the distributions (Figure 1). This result is evidence of Atmospherically Resistant Vegetation Index (ARVI), changes in forest structure caused by thinning in long Visible Atmospherically Resistant Index (VARI), and Leaf rotation teak stands [40].

Area Index (LAI).

Arithmetic means variables of heights (h) and dominant Moreover, the strong linear dependence between these height (hdom) distributions showed similar behavior variables is evidenced by the lower data dispersion [43], (Figure 1) since the stand structure was simplified by since they are derived from the same information, as 74
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Revista Forestal Mesoamericana Kurú (Julio-Diciembre, 2022) 19 (45) Figure 1. Relationships between teak stand variables.

Figura 1. Relaciones entre las variables de rodales de teca.

Figure 2. Relationship between forest and remote sensing variables.

Figura 2. Relación entre variables forestales y de teledetección.

the near-infrared (NIR) and red band (RED) reflectance.

high correlation and negative-skew distributions (Figure Principal Components (PC) and Brightness showed 2). These variables also showed extreme values, a strong linear dependence and positive-skew indicating possible outliers [44].

distributions, while Greenness and Wetness presented 75

Revista Forestal Mesoamericana Kurú (Julio-Diciembre, 2022) 19 (45) Using thematic maps of vegetation indices (Figure 3), (Figure 5). The increasing behavior of the semivariance green-colored areas indicate higher values and stronger line and the subsequent stabilization around a maximum vegetative vigor, while areas with red, orange, and yellow distance, defined by the range parameter, confirms the colors showed less vegetative. Thus, it was possible quality of semivariogram fits in this study [51]. Thus, the to distinguish sites with dense vegetation from areas interpolation was performed by ordinary kriging, in which with sparse vegetation and exposed soil (Figure 3). This thematic maps with heterogeneous spatial patterns were behavior was inverted for PC (Figure 3g) and Brightness obtained (Figure 6).

variables (Figure 3h).

The central region of the maps showed the highest values The central linear strip in the stand (Figure 3) represented of volume (V), basal area (G), mean quadratic diameter exposed soil due to a firebreak and therefore low (d ), mean height (h), and dominant height (hdom); while g

vegetation index values were obtained. In addition, six the East region presented the lowest values for all forest selective thinning have been carried out since the stand’s variables (Figure 6). These results indicate the influence establishment, with a decrease in initial average density of site quality, which is better in areas where the forest from 1,111 trees ha-1 to 139 trees ha-1. The final density variables had higher values [34], which can be confirmed ranged from 89 trees ha-1 to 189 trees ha-1, in which the by the greater dominant heights present in the same lowest values of remote sensing variables also indicated region (Figure 7g).

the sites with less dense vegetation [45] due to more intense thinning in teak stand.

Kriging with external drift

Kriging with external drift was initiated by fitting Relationship between forest and remote sensing semivariograms (Figure 7), however, in this method, variables. 

remote sensing covariables were used to explain a portion The teak stand variables showed weak linear correlations of forest spatial variability. The spherical model provided

[46] with remote sensing variables (Figure 4). Higher the best fit, except for d

with the exponential model.

dom

negative values were observed between V and h with PC

These fits resulted in low nugget effect values, showing and Brightness, while the greatest positive correlation the goodness of statistical quality of the modeling [52].

occurred between V with Greenness. For dg, there was Range values were similar to those obtained by ordinary not a correlation between PC and Brightness. These kriging, in which lower values were obtained for volume results may be indicating a rejection of the hypothesis (V), basal area (G), arithmetic mean of the heights (h), formulated in the present study, in which remote sensing and dominant height (h

) with the covariable Wetness

as covariables in geostatistical modeling does not dom

(Figure 7). These results demonstrate the influence of this allow predicting teak stand variables. However, spatial covariable on the spatial dependence of forest stands dependence also needs to be assessed for a complete

[40]. On the other hand, Brightness, which expressed an evaluation of the data [47].

index of soil brightness [30], resulted in the highest range The lack of high correlations between forest and remote values (Figure 7).

sensing variables can be explained by the vegetation Covariable Greenness resulted in the best-fit volume cover aspect generated by a satellite image, which is variable (V), with the highest coefficient of determination the result of a process involving many environmental (R²), equal to 0.990. Basal area (G) and arithmetic mean of parameters and factors [48]. Therefore, a measurement heights (h) performed better with the VARI index, resulting obtained by a remote sensor cannot be only explained by in the smallest weighted sum of squared deviations the intrinsic vegetation characteristics since an image is (WSSD) of 3.79 × 10-9. Covariable Wetness presented interfered by the atmosphere effects, canopy attributes, the highest R² (0.952) and the lowest WSSD (5.94 × 10-10) radiation sources, and soils [49], [50].

for the arithmetic mean variable of the diameters (d). The variable quadratic mean diameter (d ) performed better Ordinary Kriging

g

with the EVI index, while covariable Brightness enabled The fitted semivariograms for forest variables showed the highest R² (0.965 and 0.992) and lowest WSSD (3.93

spatial dependence and better statistics with the

× 10-10 and 1.16 × 10-10) for dominant diameter (d

)

dom

Spherical model, except for ddom with the Exponential and dominant height (h

) (Figure 7).

dom

model. The nugget effect showed values lower than 0.02

and indicates the statistical quality of the fitted models.

Semivariograms fitted according to remote sensing In addition, the range presented minimum values of 222

covariables with the best statistical performance in m for ddom and a maximum of 913 m for d. The other kriging with external drift showed appropriate patterns, fits resulted in ranges between 761 and 881 m (Figure 5).

with an increasing and subsequently stabilizing behavior of the estimated semivariances (Figure 7). As a result, In addition, semivariances showed low dispersion they were used to compose thematic maps of forest around the estimated average line for forest variables variables (Figure 8).
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Revista Forestal Mesoamericana Kurú (Julio-Diciembre, 2022) 19 (45) Figure 3. Thematic maps of remote sensing variables in teak plantations.

Figura 3. Mapas temáticos de variables de teledetección en plantaciones de teca.
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Revista Forestal Mesoamericana Kurú (Julio-Diciembre, 2022) 19 (45) Figure 4. Correlation between teak stand variables and remote sensing covariables.

Figura 4. Correlación entre las variables del rodal de teca y las covariables de teledetección.

Figure 5. Semivariograms fitted for teak variables.

Figura 5. Semivariogramas ajustados para las variables de la teca.
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Revista Forestal Mesoamericana Kurú (Julio-Diciembre, 2022) 19 (45) Figure 6. Spatial distribution of teak stands variables by ordinary kriging.

Figura 6. Distribución espacial de las variables de los rodales de teca mediante kriging ordinario.

79

[image: Image 12]

[image: Image 13]

Revista Forestal Mesoamericana Kurú (Julio-Diciembre, 2022) 19 (45) Figure 7 . Semivariograms fitted for teak variables according to remote sensing covariables.

Figura 7. Semivariogramas ajustados para las variables de la teca según las covariables de teledetección Figure 8. Spatial distribution of teak stand variables by kriging with external drift.

Figura 8. Distribución espacial de las variables del rodal de teca mediante kriging con deriva externa.
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Cuadro 2. Estadísticas de validación cruzada de kriging para la estimación de las variables del rodal.

Method

Variable

Covariable

BIAS

MAE

MPE%

RMSE

RMSE%

rxx

Ordinary kriging

V

-0.0035

0.139

2.32

0.206

3.46

0.531

Kriging with

V

Greenness

0.0048

0.148

2.48

0.228

3.83

0.430

external drift

Ordinary kriging

G

-0.0027

0.100

2.73

0.148

4.03

0.499

Kriging with

G

VARI

-0.0028

0.104

2.84

0.150

4.09

0.480

external drift

Ordinary kriging

d

-0.0002

0.056

1.60

0.071

2.05

0.539

Kriging with

d

Wetness

0.0013

0.057

1.65

0.073

2.11

0.501

external drift

Ordinary kriging

d

-0.0007

0.067

1.90

0.090

2.56

0.329

g

Kriging with

d

EVI

-0.0005

0.067

1.90

0.089

2.51

0.379

external drift

g

Ordinary kriging

d_dom

-0.0006

0.0644

1.75

0.087

2.38

0.317

Kriging with

d_dom

Brightness

-0.0002

0.0655

1.78

0.088

2.40

0.292

external drift

Ordinary kriging

h

-0.0011

0.053

1.64

0.076

2.34

0.629

Kriging with

h

VARI

0.0013

0.058

1.75

0.076

2.38

0.613

external drift

Ordinary kriging

h

-0.0009

0.058

1.74

0.076

2.3

0.512

dom

Kriging with

h

Brightness

0.0007

0.061

1.83

0.080

2.41

0.450

external drift

dom

The cross-validation statistics by the external drift The integration of remote sensing variables in forest kriging method presented better results for the dg inventory through geostatistics is advantageous since variable when compared to ordinary kriging (Table 2).

the product of kriging with external drift estimates Although the estimates of forest variables have not, in can be used as auxiliary information. Additionally, as general, presented higher cross-validation statistics a recommendation, remote sensing variables make it than ordinary kriging, through kriging with external drift possible to increase the reliability of forest inventories it was possible to compose thematic maps with a higher without increasing costs with higher sample intensity.

level of spatial detail (Figure 8), ensuring lower average errors. These results are desirable when the objective is to apply precision management in commercial stands since they also allow for adequate estimates in References
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