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Resumen

La contribución de los bosques como ecosistemas 
en la mitigación del cambio climático mediante la 
producción de biomasa, hace necesario la realización 
de estudios sobre los factores que puedan ayudar a 
determinar esta producción. Por ello se desea evaluar 
si las variables: peso de las hojas secas, diámetro a la 
altura del pecho (DAP), diámetro a la altura del tocón 
(DAT) y altura total, tienen efecto sobre la biomasa aérea 
de un árbol. El análisis se realizó en el sector sur del 
Instituto Tecnológico de Costa Rica (TEC), ubicado en 
la provincia de Cartago, se llevó a cabo un muestreo 
destructivo de 31 árboles de las especies: Eucalyptus 
Saligna y Eucalyptus Camaldulensis, con el objeto 
de estimar un modelo de regresión lineal que sea de 
utilidad para predecir la biomasa aérea promedio 
de un determinado árbol. El modelo final obtenido 

Abstract

The contribution of forests as climate change mitigation 
sinks through growth production calls for the accurate 
determination of their biomass production, therefore it is 
necessary to to evaluate variables such as weight of dry 
leaves, diameter at breast height (DBH) , diameter at stump 
height (DSH) and total height and their effect on individual 
aboveground biomass. The analysis was conducted at the 
Technological Institute of Costa Rica (TEC) located in the 
province of Cartago- Sampling consisted on 31 sampling 
of Eucalyptus saligna and Eucalyptus camaldulensis , 
in order to estimate a linear regression model to predict 
average tree biomass. The final model obtained for biomass 
was , with a coefficient 
of determination of 0,9061. We recommend a study to 
help determine the biomass and soil organic matter to 
provide a complete inventory of biomass for a given area.



Revista Forestal Mesoamericana Kurú (Costa Rica) - Volumen 11, No. 27, Julio, 2014.
kuru@tec.ac.cr - www.tec.ac.cr/revistaforestal - ISSN:2215-2504 - Páginas 22 a 33 23

Palabras clave: Eucalyptus saligna, Eucalyptus 
camaldulensis, biomasa, regresión linear, modelo, Costa 
Rica.

Key words: Eucalyptus saligna, Eucalyptus camaldulensis, 
biomass, linear regression, model, Costa Rica.

para biomasa fue , con un 
coeficiente de determinación de aproximadamente 
0.9061. Se recomienda realizar estudios que 
ayuden a determinar la biomasa del suelo y de la 
materia orgánica para contar con un inventario más 
completo de biomasa en una determinada zona.

Introduction

In order to mitigate climate change and its impacts, we 
need to reduce our emissions drastically. This requires 
strong incentives that take the form of a combination of 
standards, taxes and carbon markets. In order to meet 
the envisaged goals, these instruments will have to be 
put in place at both national and international levels 
(Delbosc & de Perthuis, 2009). The effects of different 
forest management regimes on forest, carbon stocks 
are often studied with simulation models, which are 
seen especially valuable for the estimation of carbon 
stock changes (Palosuo, T., Peltoniemi, M., Mikhailov, A., 
Komarov, A., Fauberta, P., Thüriga E., & Linder, M., 2008). 
In July 2007, Costa Rica committed itself to achieve 
carbon neutrality by the year 2021. From that event, the 
government has worked to establish the foundations 
to achieve this goal. The main measures taken in this 
regard has defined its National Climate Change Strategy 
(Salgado, L., Dumas, M., Feoli, M., & Cedeño, M., 2013). 

Forests and terrestrial ecosystems contribute 
significantly to climate change mitigation through theirs 
influence on the global carbon cycle acting as sinks 
storing large amounts of this element by means of 
biomass production and soil through the incorporation 
of organic matter, oxygen exchange carbon with the 
atmosphere through photosynthesis and respiration, but 
become a source of atmospheric carbon when under 
disturbances (Brown, 1997). The adequate determination 
of biomass in a forest is the basis to know the amounts 
of carbon in its components (Locatelli & Leonard, 2001). 
González-Zárate (2008), estimated biomass and carbon 
stocks in three cool temperate species : Pinus maximinoi 
H. E. Moore, Pinus oocarpa var. Ochoterenai Mtz. and 
Quercus sp. Allometric models were obtained from total 
biomass and components (stem, branches and foliage) 
based on variables such as DBH , total height in feet, 
height to top of the cup and crown diameter , calculating 
for Pinus maximinoi stands a storage of 161,97 Mg 
ha- 1 and 81 Mg ha- 1 of carbon. The stands with Pinus 
oocarpa fix 142,23 Mg ha- 1 of biomass and 71 Mg ha- 1 
carbon. Similarly Nájera-Luna (1999), performed a study 
to adjust equations that help to predict biomass, stem 

volume growth and increment of biomass and carbon 
sequestration in ten typical species of Matorral Espinoso 
Tamaulipas in northeastern Mexico; the results showed 
that spatial level standing biomass was 51,45 Mg ha-1 
with a distribution of 4% in foliage legs (61% in branches 
and 35% in stem), with an annual average above biomass 
production for the ten species is 4,11 Mg ha- 1 yr-1. 

The information generated in such studies becomes doubly 
important since it allows knowing the amount of carbon 
stored in existing natural forests, and also reveals the 
potential of commercial and noncommercial plantations 
as the groundwork to manage it as environmental 
services (Schelegel, B., Gayoso, J., & Guerra, J., 2000). 
Usually allometric models are generated by species, 
but it is likely that several species growing on the same 
type of vegetation (which is our case) have similarities 
of morphological pattern of growth and therefore, in the 
allocation of aboveground biomass (Acosta-Mireles, 
M., Vargas-Hernández, J., Velázquez-Martínez, A., & 
Etchevers-Barra, J.D., 2002).

The main objective was to generate the best allometric 
equation(s) which to estimate aboveground biomass in 
Eucalyptus saligna and Eucalyptus camaldulensis. 

Materials and method

Site and variables

Destructive sampling of 31 trees of Eucalyptus saligna 
and Eucalyptus camaldulensis planted within the Instituto 
Tecnológico de Costa Rica main campus, located in the 
city of Cartago was performed to obtain information 
on the diameter at breast height (DBH) and diameter at 
stump height (DSH) in cm, overall height (measured in m) 
and dry weight of leaves (WDL) in gr, to determine the 
effect to total tree biomass. Linear regression analysis 
included as predictor variables DBH, DSH and WDL was 
performed and total aboveground biomass as response 
variable, to then choose the best model to estimate 
average total aboveground biomass for a tree within the 
range of observations.
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Statistical analysis

The descriptive analysis was made using box plots and 
histograms of each predictor and the response variable, 
as these graphics allow us to study both the dispersion 
and variability, and explore position measurements. It is 
very important to analyze the linear association between 
the response variable and each predictor, in order to 
determine which predictors are most appropriate for 
inclusion in the linear model. For this we considered a 
simple linear regression between the response variable 
and each predictor separately, and then build the partial 
graph of each model according to its corresponding 
predictor (Figure 1) waste, further to estimate the linear 
correlation coefficient for each pair of variables (Table 1).

For the selection of the best predictors variables, back 
and forward selection criteria, adjusted coefficient of 
determination R2, Akaike (AIC) , Bayes (BIC) and Mallow 
statistic (Cp) were used. All these criteria indicate that 
the best predictor model includes only the weight of the 
dried leaves. The linear regression model is estimated 
only with that predictor and although this meets the 
assumptions and the percentage of the variability of the 
biomass variable explained is approximately 95% (R2 ≅ 
0,95), is not considered final model due to the estimation 
of the predictor variable is complicated and is conducted 
with sophisticated equipment of great value, which 
represents a much higher cost compared to recording 
other variables easily measured as a diameter or tree 
height.

It is very important to emphasize that the analysis used 
30 observations, given than 29th observation was 
eliminated since represented a potential influence value 
on the adjusted general values.

Results and discussion

Descriptive analysis

It can be seen in the box plots for the variables : weight of 
dry leaves , DBH , DSH and ground biomass (left side of 
Figures A1 , A2 , A3 , A4 and A5) , that there is a value in 

each case (this corresponds to the observation 1), which 
departs significantly from the other observations , i.e. 
the value is positioned outside of the range with lower 
bound equal to the value which is less than 1,5 times the 
interquartile range with regard to the first quartile and 
upper limit equal to the value that is 1,5 times greater 
interquartile range over the third quartile, which does not 
happen with total Height. Furthermore, both the box plots 
and histograms for the variables: dry leaves weight and 
aboveground biomass (Figure A1 and A5) show a positive 
asymmetric behavior (the estimation of the respective 
average is greater than the corresponding median) with 
the same charts and histograms for DBH, DSH and 
total height (figures A2, A3 and A4) showing a negative 
asymmetric behavior. Particularly in Figure A1 it can be 
seen that the dry leaves weight varies between 100 and 
3000 grams, however most observations are between 
500 and 2000 grams, on the other hand Figure A2 shows 
that the average DBH is about 3,5 cm and the number of 
trees with DBH below average exceeds the number of 
trees with DBH above that value. Figure A3 shows that 
the diameter at the stump (DSH) ranges from 2 to 10 cm 
with an average of 5,5 cm; overall height ranges between 
2 and 6 m with a 4,5 m average. Figure A4 shows the 
response variable values (aboveground biomass) varies 
between 400 and about 10000 grams, with a clustering 
of values less than 6000 grams for an average of 2800 
grams. In general all the variables have large variability, 
this because the coefficients of variation (Table 2) are 
relatively high. In the graphs above is observed how the 
smoothed line does not fit very well to the regression line 
in most cases, but all correlation coefficients are greater 
than 0,7, which shows the existence of a significant linear 
influence of the predictors on the response variable.

Selection of variables

The selection of the dry leaves variable shows the 
importance of knowing how to estimate the weight of 
the dried leaves to predict tree biomass, because this 
predictor have a fairly linear relationship with the response 
variable. Excluding the dry leaves weight variable the 
selection criteria listed above for the selection of the best 
variables were used once more. The results show that 
the best model includes only the diameter variable stump 

Predictor Correlation coefficient

Dry leaves weight 0,9751

Diameter at breast height (DBH) 0,8353

Diameter at stump height (DSH) 0,8847

Total Height 0,7021

Table 1. Estimated coefficients of linear correlation between the 
response variable and each predictor.

Cuadro 1. Coeficientes estimados de correlación lineal entre la 
variable respuesta y cada predictor.

Variable Variation coefficient%

Dry leaves weight 68,47

Diameter at breast height (DBH) 36,30

Diameter at stump height (DSH) 27,23

Total height 23,01

Aboveground biomass 74,55

Table 2. Estimation of the coefficients of variation of the predictors 
and the response variable.

Cuadro 2. Estimación de los coeficientes de variación de los 
predictores y la variable respuesta.
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Figure 1. Residual partial depending on the variables: weight of dry leaves, DBH, DSH and total height respectively.

Figura 1. Residuos parciales dependiendo de las variables: peso de hojas secas, DAP, DAT, y altura total, respectivamente.
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height (DSH), and that this model has greater plausibility, 
that is, the sum of squares residual (SSR) is lower, 
the adjusted R2 is higher and the model is unbiased 
compared with other models.

Verification of assumptions

Homoscedasticity or constant variance of errors.

Figure 2 shows the residuals versus the fitted values 
obtained by applying the linear model that predicts 
the average biomass. The caption at left shows the 
residuals and fitted values using the raw variable , where 
a curvilinear pattern is identified , which leads us to 
conclude that the constant variance assumption is not 
met, this is evidenced in a more formal way to apply the 
Breusch-Pagan test , which is not significant. 

The right caption shows the residuals and fitted values 
using the natural logarithm to the response variable (such 
transformation was chosen because λ = 0 in the interval 

where the log-likelihood is maximized, this is noted in the 
Box-Cox transformations chart (Figure A6), this graphic 
evidences a constant variance since the behaviors of 
observation points is random, such result is confirmed 
through formal test of Breusch - Pagan significant.

Linear relationship between predictors and 
response

Figure 3 corresponds to the graph of the partial residuals 
of linear model based on the diameter at stump height 
(predictor) to determine whether there is a linear 
relationship between the predictor and logarithm of 
aboveground biomass (response). Left caption shows 
the relationship between the predictor and response 
without any transformation and right caption uses the 
square root of predictor. In both graphs the smoothed 
line is a linear behavior, which shows that the assumption 
of linearity is met. As the linear relationship improved by 
applying the square root predictor, it was decided to use 
the transformed variable in the linear model.

Figure 2. Residuals against fitted values obtained by applying the linear model that predicts the average biomass. Response to the left unprocessed, 
natural logarithm of the response to the right.

Figura 2. Residuos contra valores ajustados obtenidos al aplicar un modelo lineal para predecir la biomasa promedio. A la izquierda se observa la 
respuesta sin procesar, a la derecha se observa la respuesta con logaritmo natural.

Ordinary Least Squares Robust Regression

Coeficient Estimation Standard Error Estimation Standard Error

Intercepto 2,6915 0,3072 2,8563 0,3563

√Dat 2,1338 0,1298 2,0674 0,1517

Table 3. Estimated coefficients and their corresponding standard error by: ordinary least squares, using 30 observations and robust regression using 
31 observations.

Cuadro 3. Coeficientes estimados con su correspondiente error estándar según: mínimos cuadrados ordinarios, utilizando 30 observaciones y una 
regresión robusta utilizando 31 observaciones.
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Figure 3. Partial residuals obtained by applying the linear model that predicts the average biomass against: predictor unprocessed left; square root 
predictor on the right.

Figura 3. Residuos parciales obtenidos al aplicar un modelo lineal para predecir biomasa promedio contra: un predictor sin procesar, a la izquierda; 
un predictor utilizando la raíz cuadrada, a la derecha.

Figure 4. Residuals obtained by applying the linear model that predicts 
the average aboveground biomass as a function of the expected 
standard normal quintiles.

Figura 4. Residuos obtenidos al aplicar un modelo lineal para predecir 
la biomasa en pie promedio sobre el nivel del suelo en función de los 
quintiles normales estándar esperados.

Figure 5. Data from 30 trees (dots) with the model prediction (black 
line) and confidence intervals for a tree taken at random (dotted lines) 
and the average tree (dashed lines).

Figura 5. Datos de 30 árboles (puntos) con el modelo de predicción 
(línea negra continua) y los intervalos de confianza para un árbol tomado 
al azar (líneas punteadas) y el árbol promedio (línea discontinua).
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Normal distribution of errors (normality)

Figure 4 demonstrates a linear behavior around the 
plotted points, which is within the expected (confidence 
bands) variation. This is evidence that the normality 
assumption of the errors is met. Shapiro -Wilk normality 
test was also applied to the residual of the linear model 
and it was significant.

Extreme values and cases of influence

To identify outliers externally student residuals are 
analyzed graphically (Figure A7), showing that there are 
no observations that can be regarded as outliers, since 
no residual has a larger magnitude with respect to the 
maximum value set. Moreover it is analyzed graphically 
the existence of potential values of influence in three ways 
on its own adjusted value (Figure A8), on the regression 
coefficient (Figure A9) and all the fitted values (Figure 
A10). For the first two aspects no values are considered 
to be influence values because no value exceeds the 
limits, for the third aspect value corresponding to the tree 
number 7 constitutes a value of influence are observed, 
but the influence is not relevant as to apply remedial 
measures.

Initially there were 31 observations , given that observation 
number 29 had a potential influence on the fitted values 
of the model (Figure A11) , we proceeded to estimate the 
model using robust regression , and then compare the 
coefficients and their corresponding standard errors, 
with their counterparts using the method of ordinary 
least squares without considering observation 29. It can 
be seen in Table 3 that both the estimate of the intercept 
and the regression estimate coefficient of the square 
root variable DSH do not differ much from one method 
to another, but the standard error increases when using 
robust regression, thus it was so decided to eliminate the 
above-mentioned observation.

Final model and validation

The following equation corresponds to the final model 
selected:

iDSH
eiasamBio

1338,26915,2
ˆ

+
=

Notably, the percentage of the biomass variability 
explained by the model (coefficient of determination R2) 
corresponds to 90,61% , besides the mean error square 
(MSE) is approximately 0,0526 and the predictive power 
of the model (P2) equals 0,9021.

For model validation no new data was collected since 
the harvest of new individuals carries a significant cost, 
both economic and environmental, so the model is re-

estimated 30 times using 29 observations on each of the 
estimation runs data (one observation was excluded on 
each different estimate) and the mean squared prediction 
error (MSPR), estimating the observation that was not 
considered in each case. Finally, the average value is 
calculated to obtain an average MSPR of about 0,0548 
MSPR very close to MSE, so we conclude that the latter 
is not biased.

Figure 5 shows the average biomass estimated using the 
final model. Confidence intervals for the mean response 
(green lines) and confidence intervals for individual values 
(red line) are observed within the range of variation in the 
observed data. It is observed that the average biomass 
tends to increase by an exponential relationship, where 
the diameter at stump height increases. 

Forest growth models may comprise many separate 
but interrelated components, each of which may 
influence, and be influenced by other components and 
by assumptions in the-model. Model evaluation should 
extend to all model components and assumptions, and 
this requires a thorough understanding of the structure 
of the model and the interrelationships between 
components (Soares, P., Tomé, M., Skovsgaard, J.P., 
& Vanclay, J.K., 1995); understanding the behavior of 
allometric variables prior to model construction is a 
fundamental step to decide what variable might be 
best suited for which stage of the plantation. Biomass 
for energy plantations, such as the one analyzed in this 
paper, relies better on the use of DSH as a predictor of 
aboveground biomass given the age and the coefficient 
of variation present. Total height although having a low 
variability is not dependent on density and thus might me 
a weak predictor on rotation terms. However, evaluation 
of which variable to use should not be a mere afterthought 
to model construction, but should be considered at every 
stage of model design and construction; for example 
when component functions are formulated and fitted 
to data, and when these components are assembled to 
provide the completed model (Soares et al., 1995).

The model here constructed is an individual tree 
biomass model; it must be remembered that as class 
width becomes wider and the number of trees per cohort 
increases, the distinction between individual tree models 
and size class might be blurred; single tree models are 
defined as those which simulate each individual for a given 
period (Vanclay, 1994). Understanding the initial behavior 
of a bioenergy plantation such as this with regression 
models would eventually aid in the development of stand 
models for fast growing plantations and they would aid 
at validating their use. 

Other studies (Almeida, A.C., Landsberg, J.J., Sands, P.J., 
Ambrogi, M.S., Fonseca, S., Barddal, S.M., & Bertolucci, 
F.L., 2004 ; Esprey, L.J., Sands, P.J., & Smith, C.W., 2004) 
have ventured in the use of process based models to 
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predict Eucalyptus plantations productivity in new areas, 
analyzing changes in productivity across currently 
planted areas and to determine whether such changes 
are attributable to climate or management, and as a tool 
for defining strategic scenarios. Undeniably, they have 
acquired the capacity to provide immediate information 
about growth in any area of a large plantation estate; 
however their use still comes to restriction concerning 
calibrations, therefore without information on individual 
behavior of trees under new densities and conditions 
many of these models risk potential failure; making basic 
studies for high density planting for biomass production, 
as the one performed here, abundantly necessary. 

Conclusions

The tight end allometric equation to estimate biomass 
by OLS in species Eucalyptus saligna and Eucalyptus 
camaldulensis based on diameter at stump height (DSH) 
has a high degree of reliability according to the analysis 
carried out and the estimated parameters.

The model obtained on this study is an individual tree 
model useful for short rotation biomass crops for this 
geographical region; which will be of extreme use for 
energy enterprises in need of biomass estimations.

Recommendations

To complement the information on carbon in the species 
studied, it is recommended to evaluate biomass related to 
and soil organic matter, to have a complete assessment 
of carbon storage for eucalyptus ecosystems.

It is critical , in future studies to estimate aerial biomass 
, to accurately measure dry leaves weight since this 
variable is a predictor of high quality, also considering 
variables such as diameter (DBH) and overall height, as 
these relate very well with aboveground biomass of trees.

Studies should be conducted on quantification of 
biomass with other eucalypts elsewhere in the country, 
to make comparisons between species or between sites 
taking into account the different environmental factors 
that can influence reforestation projects
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Figure A1: descriptive graphics for the variable dry leaves weight.

Figura A1: gráficos descriptivos para la variable peso de hojas secas.

Figure A2: descriptive graphics for the variable diameter at breast height (DBH).

Figura A2: gráficos descriptivos para la variable diámetro a la altura del pecho (DAP).
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Figure A3: Descriptive Charts for variable diameter at stump height (DSH).

Figura A3: Gráficos descriptivos para la variable diámetro a la altura del tocón (DAT).

Figure A4: Descriptive Charts for total height variable.

Figura A4 : Gráficos descriptivos para la variable altura total.
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Figure A5: Descriptive charts for above ground biomass variable.

Figura A5: Gráficos descriptivos para la variable biomasa en pie sobre el nivel del suelo.

Figure A6: Values of λ for Box -Cox transformations.

Figura A6: Valores lambda para transformaciones Box –Cox.

Figure A7: Studentized residuals externally obtained through the 
application of the linear model that predicts the average aboveground 
biomass.

Figura A7: Residuos estudentizados obtenidos externamente a través 
de la aplicación de un modelo lineal para predecir la biomasa en pie 
promedio sobre el nivel del suelo.
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Figure A8: DFFITS values obtained by applying the linear model that 
predicts the average biomass.

Figura A8: Valores de DFFITS obtenidos al aplicar un modelo lineal 
para predecir la biomasa promedio.

Figure A10: Cook distance values obtained by applying the linear 
model that predicts the average biomass.

Figura A10: Valores de la distancia de Cook obtenidos al aplicar un 
modelo lineal para predecir la biomasa promedio.

Figure A9: dfbetas values obtained by applying the linear model that 
predicts the average biomass.

Figura A9: valores dfbetas obtenidos al aplicar un modelo lineal para 
predecir la biomasa promedio.

Figure A11: Cook distance values obtained by applying the linear 
model that predicts the average biomass using 31 observations.

Figura A11: Valores de la distancia de Cook obtenidos al aplicar 
un modelo lineal para predecir la biomas promedio utilizando 31 
observaciones.


